

Background

- Personnel in space are exposed to high-energy neutrons
- The amount of exposure that a human may be exposed to in these environments is a limiting factor in space exploration • NASA will attach a neutron spectrometer to the International Space Station (ISS) to measure and record the quantity and trajectory of neutrons to develop a safety exposure limit

Objective and Approach

- Analyze thermal, vibrational, and structural loads that the spectrometer's transportation and operating environment present • Design a housing for the neutron spectrometer to ensure its
- functionality
- Analyze and report the expected impact that the housing will have on the neutron spectrometer survivability

Design Criteria

- Spectrometer must maintain internal temperature between 15 and 45°C to ensure functionality
- Housing shall withstand combined loading scenarios ranging from +8.5 to -4G of axial and $\pm 3G$ of lateral acceleration
- Prevent fiber craze by designing against natural resonance • Housing will utilize the least amount of material possible

Key

- 1) Bolt for housing
- 2) Proposed housing
- 3) "Light Tight" Insulating container
- 4) Fiber network w/supporting shims
- 5) Spectrometer supporting brackets
- 6) Electronics
- 7) Inner Dual-layer polystyrene wrap

Housing Design Decisions

- **1. Fastening Solution:** Partially threated bolts
- 2. Housing Type: Fully Encapsulated
- 3. Housing Material: Aluminum 2024
- 4. Machining Parameters:
- a) .5mm filleted edges & corners
- b) 7.5mm wall thickness
- c) 80mm tapped holes

Design of Neutron Spectrometer Housing by Analysis of Failure Criterion

Dr. James Ryan, Faculty Advisor Dr. Christopher White, Faculty Advisor

- Derived equations from energy balance eq.
- Sun's radiation is greater than the absorptivity from Earth's radiation
- emissivity (ε) of 0.09
- Sun is black body w/ a solar flux of 1418 $\frac{W}{m^2}$
- fluctuates $\pm 21 \frac{W}{m^2}$
- Mass of housing is 10.767 kg

atural Frequency of Fibers (rad/sec)	Natural Frequency of Fibers (Hz)
2376.6	378.4
4753.1	756.9
7129.7	1135.3
9506.2	1513.7
11882.8	1892.2
14259.3	2270.6
16635.9	2649.0
19012.4	3027.5
21389.0	3405.9
23765.5	3784.3