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Introduction

e In learning from demonstrations, high-level sequential tasks are often
modeled as POMDPs. It is important to know the POMDP reward
function to learn the policy of the demonstrator.

e IRL for POMDPs is an ill-posed problem. We propose an alterna-

tive approach for learning the reward function of a POMDP model
through reducing the POMDP to an MDP.

e We perform extensive experiments to show that the reward learned

using our proposed framework generates policies that are better than
policies generated by the state-of-the-art POMDP-IRL algorithms.
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Inverse reinforcement learning model

e Existing inverse reinforcement learning (IRL) methods for POMDPs
are computationally very expensive and the problem is not well un-
derstood. In comparison, IRL algorithms for MDP are well defined
and computationally efficient.

Proposed Approaches

The core idea is to reduce the POMDP to an MDP and extract the re-
ward function using an eflicient IRL algorithm for MDPs. Then the re-
ward function is employed to generate policies from the original POMDP.

A- Naive Reduction: The main idea of naive reduction is to map
each possible observation to one MDP state, thereby eliminating the
uncertainty with state estimation.
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Naive MDP model: 0 and 1 indicate the presence and absence
of a specific observation, respectively.

B- Discretization: Discretization is where we discretized the POMDP
beliet state to a pre-defined number n of beliet segments. Each seg-
ment represents one state of an MDP.

The transition function (7' = P(b”|b,a)) is calculated as follows:
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The Discretized belief space

Learning Behavioral Inter

e We learned two applied behavior analysis (ABA)-based educational

interventions from demonstrations: social greetings (SG) and object-
naming (ON)

e ABA is proven to be effective to teach children with autism.

e ABA interventions follow a rigid structure: Command—> prompt (if
no response) —> reward (if positive response)—> End session

We learned this structure (i.e. the policy of the demonstrator) through
learning the reward function using our proposed framework.
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Experiments

e During the user studies, we restricted the maximum number of
prompt before executing a terminal action to one for the SG inter-
vention and to five for the ON.

e Six students without autism participated in the study. Each partici-
pant completed 18 interactions with the tele-operated robot.
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User interaction with the robot

Perception using CNN

e We used a CNN-based framework to identify the presences of any or
more of the audio-visual cues denoting compliance non-compliance of
the participants.

e There are two separate CNNs in this framework: Fopnpn, 1S trained
to detect gaze and hand gesture and, Aoy p, is trained to process
verbal response.

e We trained both networks using 139 videos from our training dataset
and evaluated the model’s accuracy on a set of 50 videos. The accu-

racy was 98.4% for the Aoy y and 92.6% for the Fony.
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The CNN-based framework for observation processing. F': filter
dimension, S: Stride, N: the number of filter

Social greeting: Accuracy of different reward functions

DP Witness | H.C.R Simplified
87.5% 87.5% 87.5% 100%
87.5% 91.6% 95.8% 100% 100%

87.5% 89.6% 91.6% 93.75% 100%

Object naming: Accuracy of different reward functions

Obs. | DP Witness | H.C.R | Discretized | Simplified
50% 50% 50% 50% 100%
100% 75% 100% 100% 100%
100% 75% 100% 100% 100%
100% 75% 100% 100% 75%
507 507 757 757 757

80% 65% 85% 85% 90%

Discretized
87.5%

Conclusion

e The proposed framework offers a simple yet elegant way to use
POMDP models to learn high-level sequential tasks from demon-

stration and outperforms the policies generated using existing
POMDP-IRL algorithms.

e Through a series of experiments with two real-world HRI tasks,
we show that the POMDP policies generated using the generated
reward functions accurately mimic a demonstrator’s policies.
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