

Wireless Wearable Triage & Health Monitoring Device for MCIs and First Responders

Brian Coffen Advisor: Dr MD Shaad Mahmud URC ISE 2021-04-28

Background - MCI

- Mass Casualty Incident (MCI)
 - Response need is greater than available response resources
 - Emergency Services may be overwhelmed
 - Chaotic, Dangerous Environments
 - Difficulties in tracking responders and people who require care
 - Often requires Triage

Source: Wikimedia Commons

Background – NIMS/MCI Management

- Zones
 - Hot
 - Warm
 - Cold
- Control
- Triage

Background - Triage

- START triage
 - RPM 30-2-Can Do
 - Limitations:
 - Single Moment
 - Doesn't Consider "Delayed" to "Immediate" transition
 - May be oversimplified
 - No resource management defined

NH

Background – MCI Recent Examples

Source: Aaron Tang via Wikimedia Commons (CC-BY-SA 2.0)

- Boston Marathon Bombing (2013)
 - 264 Wounded (17 Amputations), 3 Dead
- - 15 block response area, with potential threat of secondary bombs
 - Cell network overload

Background - MCI Recent Examples

- Las Vegas Shooting (2017) - 60 Dead, 411 wounded by gunfire, total wounded 867 due to panic

 - 15 acre lot used for music festival
 - Rapid treatment, and

Source: Jennifer Morrow via Wikimedia Commons (CC-BY 2.0)

difficulty in moving patients due to road closures

Background – MCI Recent Examples

- - Hospitals at 50%
 - from center

Source: Mehr News Agency via Wikimedia Commons (CC-BY 2.0)

• Beirut Port Explosion (2020) - 215 Dead, 7500 wounded capacity due to COVID-19 - Damage up to 6 miles

Background – Lessons from Recent MCIs

- Cell Service can be overloaded, complicating response and patient location
- Tracking, and managing flow of patients can be difficult
- Other current medical issues may strain resources

Main Question

Could a device be developed to enhance the ability of first responders to deal with MCIs, by augmenting triage with remote monitoring, to allow for better resource utilization?

niversit

Method

- Small battery-powered wearable patch with quick application
- Measure and process vitals and location on device
- Wirelessly transmit data to central control for logging and monitoring

h with quick on on device itrol for

High Level System Block Diagram Pt1 LoRa Pt 2 LoRa Hub Control (MKRWAN) PC Pt 3

Prototype

Prototype Key

Prototype Placement

Background - Vitals

- Heart Rate lacksquare
 - Shock/Injury Compensation
- **Respiration Rate** lacksquare
 - Shock/Respiratory Distress/TBI
- Temperature •
 - Hypo/Hyperthermia
- Blood Pressure
 - Shock/Massive Hemorrhage
- SpO2 ${\color{black}\bullet}$
 - Respiratory issues

Vitals – Heart Rate/ECG

- AD8232
 - 3.3 V supply, nominal 170 μA
 - Integrated Right-Leg-Drive
 - Internal RFI Filtering
 - Analog output (0-3.3 V)
 - Sampled at 200 Hz, with 10 bit ADC
 - Pad connection detection

Source: Sparkfun (CC-BY 2.0)

Main Signal Processing Board

- Sparkfun Arduino Pro Micro
 - 8 mHz, 3.3 V, ATMega 32U4
 - Configured as I2C slave
 - Performs filtering, BPM, and RR calculation

Source: Sparkfun (CC-BY 2.0)

Vitals – ECG Filtering

- FIR Notch Filter 60 Hz
 - **-** 113 Tap
 - -33 dB reduction at 60 Hz
- Simple MA Highpass - Removes baseline wander

Vitals – ECG Filtering Result

- High-pass eliminated baseline wander
- Notch removed 60 Hz noise, though added ripple after QRS complex
- Note that low noise is present in this example, compared to during development and testing

Effect of Filtering

Vitals – Pan Tompkins

- Leverages quick spike in QRS complex
- Takes square of derivative
- Integrates the SQD
- Beat finding becomes trivial

Vitals – ECG Issues

- Errors due to motion/respiration
- Inability to measure abnormal rhythms
 Could be mitigated by sending a "snapshot"
- Potential issues with pad placement in certain scenarios/patients

Vitals – Respiration Rate

- Estimated from change in R-R interval during inhalation and exhalation
- Find Peak, Evaluate time between peaks to approximate respiration rate

Vitals – RR issues

- Arrhythmias
- Higher resolution with higher heart rate/HRV
- May not be fast enough for hyperventilation

Vitals - Temperature

- Maxim (Dallas) DS18B20
 - ±0.9° F accuracy
 - Dallas 1-Wire digital output
 - 1 mA active

Vitals – Temperature Theory

- Skin temperature and core temperature are related (Lenhardt, Sessler 2006)
- Skin in/near the armpit is close to core temperature due to blood flow

Vitals – Temp Issues

- 1-Wire interface/ADC operation is blocking, and takes time
- Interfered with ECG timing - Moved to MKRWAN 1300

University

GPS Location

- GTOP PA6H
 - 66 channel
 - 25 mA Acquisition, 20 mA
 Tracking
 - **-** <10 m error
 - Serial NMEA strings

GPS Issues

- Not useful in indoor/some urban scenarios
- High power usage
 - Limits possible uptime of device

Wireless - LoRa

- "Long Range"
 - Nominal 10 km range
 - Low Data rate/bandwidth
 - 915 mHz ISM band
- Arduino MKRWAN 1300
 - SAMD21

Source: Arduino

- Murata CMWX1ZZABZ

Wireless – LoRa limitations

- Best performance with LoS
- Collisions
- Interference
- Limited Data Rate (5500 bps)
- Practical range under 1 Km with obstructions
 - Could be improved via use of better antenna systems, or increased spreading factor

University of New Hampshire

Source: SBR Labs (CC-BY-SA 2.0)

Wireless – Data Format

- 1 byte address
- 1 byte BPM
- 1 byte RR
- 2 bytes Temp
- 8 bytes Location
- Converted to Byte Array, and XOR enciphered

5C243344542233446FAE8A2F1855764B7D356B70966284

Jniversitv

Wireless Transmission Scheme

- Send latest recorded data randomly between 5 and 10 seconds from last
 - Decreases probability of two similarly started units constantly colliding
 - Allows for multiple devices on one frequency

Wireless - Hub/Decoding

- Arduino MKRWAN1300
 - Monitors frequency
 - If address of packet
 within whitelist, data is
 XOR deciphered
 - Parsed into human
 readable USB serial string

Data: 482E334454223344D81677182557643 ADDR: 66 BPM: 89, RR: 12, TEMP: 69, L Data: 482E334454223344D81677182557643 ADDR: 66 BPM: 89, RR: 12, TEMP: 69, I Data: 702B334454223344DEE22D88255764C ADDR: 66 BPM: 97, RR: 9, TEMP: 69, LA Data: 442B334454223344DEE22D88255764C ADDR: 66 BPM: 85, RR: 9, TEMP: 69, LA Data: 442A334454223344DEE22D88255764C ADDR: 66 BPM: 85, RR: 8, TEMP: 69, LA Data: 492A334454223344DEE22D88255764C ADDR: 66 BPM: 88, RR: 8, TEMP: 69, LA Data: 763B334454223344584AF8FD5557647 ADDR: 66 BPM: 103, RR: 25, TEMP: 69, Data: 722F334454223344B76348781655764 ADDR: 66 BPM: 99, RR: 13, TEMP: 69, L Data: 4B2A334454223344FBEED4671255764 ADDR: 66 BPM: 90, RR: 8, TEMP: 69, LA Data: 4E2A334454223344B0A537314557647 ADDR: 66 BPM: 95, RR: 8, TEMP: 69, LA

F22511678966284	
AT: 42 LON: -70	with RSSI -41
F22511678966284	
AT: 42	with RSSI -41
BA9EFF78966284	
T: 42 LON: -70.	with RSSI -41
BA9EFF <u>789662</u> 84	
T: 42 , LON: -70.	with RSSI -41
BA9EFF78966284	
T: 42. , LON: -70.	with RSSI -41
BA9EFF78966284	
T: 42. , LON: -70.	with RSSI -41
7A5104C7B966284	
LAT: 42. , LON: -7	2 with RSSI -43
28B92BF4E966284	
AT: 42 LON: -70	with RSSI -42
C74C88944D966284	
T: 42. LON: -70.	with RSSI -42
748E784F966284	
T: 42. LON: -70.	with RSSI -42

Wireless – Python Logging

- Data parsed again, and stored in CSV with timestamps
- Warnings displayed in console if normal ranges exceeded

Addr: 66, 79, 12, 71
RESPWARN: 66 may be Bradypneic
Addr: 66, 75, 4, 71
RESPWARN: 66 may be Bradypneic
Addr: 66, 95, 4, 71
Addr: 66, 97, 7, 71
Addr: 66, 87, 10, 71
Addr: 66, 86, 8, 71
Addr: 66, 83, 8, 71
HEARTWARN: 66 may be Bradycardic
Addr: 66, 39, 9, 71
RESPWARN: 66 may be Hyperventilating
Addr: 66, 76, 37, 71
HEARTWARN: 66 may be Tachycardic
Addr: 66, 129, 10, 71
HEARTWARN: 66 may be Tachycardic
Addr: 66, 126, 15, 71
HEARTWARN: 66 may be Tachycardic
RESPWARN: 66 may be Hyperventilating
Addr: 66, 223, 49, 71
RESPWARN: 66 may be Hyperventilating
Addr: 66, 70, 24, 71
RESPWARN: 66 may be Hyperventilating
Addr: 66, 75, 24, 71
RESPWARN: 66 may be Hyperventilating
Addr: 66, 76, 34, 71
RESPWARN: 66 may be Hyperventilating
Addr: 66, 64, 23, 71
RESPWARN: 66 may be Hyperventilating
Addr: 66, 76, 27, 71
HEARTWARN: 66 may be Bradycardic
Addr: 66, 59, 19, 71
RESPWARN: 66 may be Hyperventilating
Addr: 66, 70, 28, 71
HEARTWARN: 66 may be Bradycardic
RESPWARN: 66 may be Hyperventilating
Addr: 66, 51, 25, 71
HEARTWARN: 66 may be Tachycardic
RESPWARN: 66 may be Hyperventilating
Addr: 66, 118, 25, 71
Addr: 66, 86, 7, 71
Addr: 66, 75, 10, 71

04:56.3 05:01.3 05:06.3 05:11.3

05:16.3 05:21.3 05:26.3 05:31.3 05:36.3 05:41.3

05:46.3 05:51.3 05:56.3 06:01.3 06:06.3 06:11.3

06:16.3 06:21.3 06:26.3 06:31.3 06:36.3 06:41.3

06:46.3 06:51.3 06:56.3 07:01.3 07:06.3

07:11.3

83	9	88		0		0	0	0
81	10	88	42		-70		0	0
82	12	88	42		-70		0	0
83	13	88	42		-70		0	0
86	75	88	42		-70		0	1
84	11	88	42		-70		0	0
74	11	88	42		-70		0	0
81	8	88	42		-70		0	0
64	8	88	42		-70		0	0
64	7	89	4		-70		0	0
120	10	90	42		-70		1	0
120	11	90	42		-70		1	0
57	23	90	42		-70		2	1
114	7	90	42		-70		1	0
64	10	90	42		-70		0	0
117	59	90	42		-70		1	1
108	11	90	42		-70		1	0
224	15	90	42		-70		1	0
100	16	90	42		-70		0	0
108	16	90	42		-70		1	0
106	8	90	42		-70		1	0
114	10	90	42		-70		1	0
113	22	90	42		-70		1	1
109	9	90	42		-70		1	0
110	22	90	42		-70		1	1
35	15	90	42		-70		2	0
106	36	90	42		-70		1	1
231	35	90	42		-70		1	1

Prototype Cost

Component	MSRP	Quantity	
MKRWAN 1300	\$40.30	2	
Sparkfun Pro Micro 3v3	\$17.95	1	
AD8232 Breakout	\$19.95	1	
Electrode Cable	\$4.95	1	
Ag-AgCl Electrodes	\$8 (\$2.67)	1	
DS18B20 Temp Sensor	\$3.95	1	
PA6H GPS	\$40	1	
		TOTAL	~\$170

Future Work/Improvements

- Improve robustness of BPM and RR calculation
- Cost Reduction lacksquare
- Build multiple devices and evaluate
- Add blood pressure estimation
 - May be possible via use of PPG sensor and calculation of Pulse Wave Velocity
- Custom one-board PCB
- Use alternative MCU with standalone LoRa unit
- Develop GUI lacksquare

Issues Encountered During Project

- Time Management & Other Workload
- Sensor decisions
- High Speed vs Low Speed
- Overfocusing on smaller concerns
- Team size of one

Summary/Conclusion

- A functioning prototype wearable was designed and constructed, and could send heart rate, respiration rate, and body temperature wirelessly to a control PC.
- The efficacy of the prototype in a practical scenario has yet to be evaluated, but shows promise.

Thank You

Special Thanks to Dr MD Shaad Mahmud, and the UNH RSL, for support and guidance

References

- R. DeNolf, C. Kahwaji, 'EMS Mass Casualty Management', 2020. Available: <u>https://www.ncbi.nlm.nih.gov/books/NBK482373/</u> ۲
- FEMA, 'National Incident Management System'. Available: https://training.fema.gov/nims/ ٠
- CHEMM, 'START Adult Triage Algorithm'. Available: https://chemm.nlm.nih.gov/startadult.htm ۲
- H. Zhu, Y. Pan, F. Wu, R. Huan, 'Optimized Electrode Locations for Wearable Single-Lead ECG Monitoring Devices: A Case Study Using WFEES Modules Based on the LANS Method', Sensors (Basel), October2019. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832916/ ٠
- UNH Remote Sensing Lab. Available: <u>http://rsl.unh.edu/</u> ۲
- Maxim Integrated. "MAX86150 Integrated Photoplethysmogram and Electrocardiogram Bio-Sensor Module For Mobile Health". Available: <u>https://www.maximintegrated.com/en/products/interface/sensor/interface/MAX86150.html</u> ٠
- J. Pan, W. Tompkins, "A Real-Time QRS Detection Algorithm". IEEE Transactions on Biomedical Engineering. BME-32 (3): • 230–236, March, 1985.
- Adafruit. "Flora Wearable Ultimate GPS Module". Available: https://www.adafruit.com/product/1059 ۲
- Arduino "MKRWAN 1300". Available: <u>https://store.arduino.cc/usa/mkr-wan-1300</u> ۲
- Maxim Integrated "DS18B20". Available: https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf ۲
- Analog Devices "AD8232". Available: https://www.analog.com/media/en/technical-documentation/data-sheets/AD8232.pdf ۲
- Sparkfun "Pro Micro 3.3V/8MHz". Available: https://www.sparkfun.com/products/12587 ٠

