En Route to Cyclacenes: A Diels-Alder Strategy for the Synthesis of Molecular Belts

Michael Miller

Abstract

The aim of this project is to complete the first laboratory synthesis of cyclacenes. Cyclacenes are belt shaped molecules composed of repeating six-membered benzene rings. To date, only a few cyclacene-like structures have been synthesized. These structures are the thinnest possible analogue of a carbon nanotube. The synthetic design of this project involves the generation of two connected, flexible molecular halves with complementary reactive ends. These halves will snap together head-to-tail and form the closed belt. Molecular modeling indicates that this reaction should be a favorable, exothermic process that can result in the formation of the stable precursors needed to reach a fully aromatic cyclacene. The chemical and structural features of cyclacenes can then be explored by researchers. Cyclacenes are expected to have diradical character, a novel electronic characteristic. Additionally, the composition of cyclacenes can be feasibly used for the precise, bottom-up synthesis of carbon nanotubes. This study proposes a new synthesis of cyclacenes in order to further these scientific endeavors.