

FEEDBACK WITH ROBOTIC APPENDAGES

Hassan AL-Jewad, Nathanael Frisch, Bryan McKenney, Eric Smith

University of New Hampshire, InterOperability Laboratory, Durham, NH

INTRODUCTION

- Certain robotic arm technologies could be improved with haptic or optical feedback to the user.
- Some of the areas where improvement can be made:
- Toxic waste management
- Prosthetics
- Remote Surgery
- The goal is to figure out the best way of providing feedback to the user.

DEVELOPMENT

- Distance Sensing
- This IR sensor uses a phototransistor output, emitting a larger value when there is less light.
- We can use this to sense when the robot is getting close or touching.
- Robotic Claw
- Used Arduino code with a Vex Robotics Motor to programmatically open and close a claw.
- Controlled commands with input from computer.

ACKNOWLEDGEMENTS

Special thanks to the University of New Hampshire InterOperability Laboratory as well as to Timothy Carlin and Jeffrey Lapak for funding and academic support of this project.

RESEARCH FINDINGS

- Distance is not an easy thing to measure
 - Capacitive sensor versus IR sensor.
- Visual comparison

	Simple	Inexpensive	Natural Response	Easily Modifyable
Visual	x	х		x
Digital	x	x		x
Haptic			х	

RESULTS

- Where we are now.
 - Claw that can open and close around objects using computer controls.
- Sensor that can sense touch and close proximity.
- Where We Want to Go?
 - Haptic gauntlet with motion controls to simulate real arm movements and touch.
 - Testing with different shaped objects.
 - Full wireless control.

REFERENCES

1. Okamura A. M. (2009). Haptic feedback in robot-assisted minimally invasive surgery. Current opinion in urology, 19(1), 102–107. https://doi.org/10.1097/MOU.0b013e32831a478c

2. Bimbo, Joao & Pacchierotti, Claudio & Aggravi, Marco & Tsagarakis, Nikos & Prattichizzo, Domenico. (2017). Teleoperation in cluttered environments using wearable haptic feedback. 3401-3408. 10.1109/IROS.2017.8206180.