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String Theory
String theory is currently the leading contender for a phys-
ical framework that unifies quantum mechanics and general
relativity.

There are different formulations of the theory, but each for-
mulation requires at least a (9+1)-dimensional spacetime
structure.

In order for string theory to agree with the experimentally
verified (3+1)-dimensional spacetime structure, 6 of 9 space
dimensions must be “compactified” — these compactified di-
mensions take the form of a Calabi-Yau 3-fold, a three com-
plex dimensional manifold.

There is a lower bound of 10°%° choices for compactification.

A Machine Learning

Used to classify data according to certain known/unknown
patterns (relationships between data).

Data is split into two groups: a training and testing set

Many different types of models / network architectures

We use a fully-connected network.
— Each data point is passed forward through the network
individually producing a prediciton.

— A cost function measures how accuracte the networks
prediciton was.

— An optimization algorithm alters the network to mini-
mize the cost function.

e Preparation of data is crucially important.

— Number of data points must be as close to uniform
across classes (uniform information density).
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Compactification as
a Machine Learning Problem

A Calabi-Yau n-fold can be uniquely mapped to an (n + 1)-dimensional
reflexive polytope, A*, representing a particular type of compact
(n + 1)-dimensional manifold known as a toric variety:

(21)* + (22)° + ()* = 0
= (21,22, 23) ~ (A21, Az2, Az3)

Our model:

o Fully-connected feed forward neural network

— 2 hidden layers

— Stochastic Gradient Decent Optimization
e Hyperparameters are optimized by a brute force method

e Data must be regularized to avoid overfitting

2-dimensional polytopes:

o There are only 16 reflexive 2D polytopes, including the dual
polytopes (A%)°

o Polytopes are grouped by their volume using the relation
Vol(A%) + Vol (A")°) = 12

o Reflections, rotations, addition of zero vectors and permu-
tations of the vertices expand dataset from 16 to 6912

© Model achieves an accuracy of around 90%
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3-dimensional polytopes:

There are 4319 reflexive 3-dimensional polytopes.

The problem of grouping the 3D polytopes is not as straight forward as
for the 2D case.

Each Calabi-Yau manifold has a topological invariant (not-unique) called
its Picard number.

The Picard number can be calculated from the polytope data by the
equation
Pic=1(A%) = 3" I(6*)+C -4
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where  is the number of integer points of a polytope and I* is the number
of interior integer points of a facet or an edge, with the correction term

C=3 1))

edges 0°€A*

A relation analogous to the volume equation for 2D polytopes is

Pic(A*) + Pic((A%)°) = C = 20

The 3D polytopes are then grouped into three classes:

Class 0:2-Pic <20+ C
Class 1:2-Pic>20+C
Class 2:2-Pic=20+C

e An accuracy of around 80% has been achieved with current models.

Future work

o The y relevant case of the 4 toric varieties,
corresponding to the Calabi-Yau 3-folds of string theory, are still to be
worked on and contain 473,800,776 reflexive polytopes.

© The question remains of how to group the 4-dimensional polytopes, and
what grouping methods can be carried over from the 3-dimensional case.
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