CPBR PIPELINE TRESTLE DESIGN

Team 14: TRED Engineering April 24, 2020

PROJECT MANAGER: TYLER GLEASON

TEAM MEMBERS: DAN MARTINEAU, ELANOR PRICE, ROBERT MOON

PROJECT SPONSOR: ZACK JENKINS, P.E., COLLINS ENGINEERS

FACULTY ADVISOR: DR. ROBERT HENRY, P.E.

BACKGROUND

- LOCATION: COLUMBIA PACIFIC BIO REFINERY, CLATSKANIE, OREGON
- OPENED IN 2008:
 - ETHANOL PRODUCTION
- IN 2012 OIL DISTRIBUTION BEGAN
- SOLD IN 2013 TO GLOBAL PARTNERS LP
- CURRENT FUNCTION: PRODUCTION AND DISTRIBUTION OF ETHANOL
- WANT TO DISTRIBUTE BOTH ETHANOL AND CRUDE OIL

Google Earth, earth.google.com/web/.

PURPOSE

- DESIGN PIPELINE TRESTLE
 - Conditions on site
 - DUAL PRODUCT LOADING
 - LARGER SHIPS
- FEASIBILITY ANALYSIS OF THE PROPOSED DESIGN

Google Earth, earth.google.com/web/.

PROJECT SCOPE

- OBTAIN BACKGROUND INFORMATION
- Design Pipeline Trestle
- DEVELOP NECESSARY DESIGN LOADS
 - MODEL DYNAMIC LOADS AS PSEUDO STATIC LOADS
- Address foundation concerns associated with liquefaction in deep foundations
- EVALUATE ALTERNATIVE DESIGN
- FEASIBILITY ANALYSIS FOR DESIGN
- Maintain a record of project communications
- DEVELOP A SCHEDULE

EXISTING CONDITIONS

- EXISTING PIPER AND PIPELINE STILL IN PLACE
- RECENT UPGRADES TO PIER FOR LARGER SHIPS
- POTENTIAL FOR SEISMIC EVENTS
- LOCATION OF PIPELINE
 - LOADING POINTS SPECIFIED ALONG PIER
 - SPECIFIC STARTING POINT

FACTORS TO BE CONSIDERED

- SEISMIC ACTIVITY
 - PILE FOUNDATIONS
 - SOIL LIQUEFICATION
 - SETTLEMENT
- DISTRIBUTION CONDITIONS
 - PIPE CAPACITIES
 - Two product distribution
- ENVIRONMENTAL CONDITIONS:
 - THERMAL EXPANSION

https://www.indiamart.com/shreeshaktiengineering/pipe-roller-and-rotators.html

ALTERNATIVE TRESTLE DESIGNS

- How pipeline will rest on the structure
 - CATENARY PIPE HANGING BELOW
 - TRADITIONAL TRESTLE RESTING ON
- PILES PART OF TRESTLE
- Materials
 - TIMBER
 - FIBERGLASS
 - STEEL

https://www.bridgemeister.com/imgpoa/poctnewhavenp

https://c8.alamy.com/comp/BBK3DE/a-pipeline-across-the-canadian-river-for-the-distribution-of-natural-BBK3DE.jpg

CONFIGURATION OF PROPOSED PIPELINE

ALLOWING FOR THE EASIEST CONSTRUCTION

- ON EXISTING PIER
- New trestle support system
 - ON WATER LINE
 - FOLLOWING PIER (IN YELLOW)
 - ON LAND LINE (ORANGE)
- WATER LINE CONFIGURATION SELECTED

Google Earth, earth.google.com/web/.

Green = Recent Upgrades Red = Loading points

FINAL SITE PLAN

LOADING CONSIDERATIONS

- 5 DIFFERENT LOADING POINTS DEPENDING ON POSITION
- WORST LOAD CASES FOUND
 - ASCE 7-10
 - SEISMIC DESIGN OF PIERS AND WHARVES ASCE 61-14
- PIPE CONTENT AS A LOAD

Pipeline cross section- Collins Engineers -Dwg no.52401

HAZARD LEVEL DEFINITIONS

Table 1: ASCE 61-14 SEISMIC HAZARD LEVEL DEFINITIONS		
Seismic Hazard Level in Accordance with ASCE 61-14	Definition of Seismic Hazard Level (High Design Classification)	Performance Level (High Design Classification)
Operating Level Earthquake (OLE)	Defined as an event with a 50% probability of exceedance within a 50-year period (72-year recurrence interval)	Minimal Damage
Contingency Level Earthquake (CLE)	Defined as an event with a 10% probability of exceedance within a 50-year period (475-year recurrence interval)	Controlled and Repairable Damage
Design Earthquake (DE)	Defined as ² /3 of the Maximum Considered Earthquake (MCE) in accordance with ASCE 7-05. The MCE is based on an event with a 2% probability of exceedance within a 50-year period (2,475-year recurrence interval)	Life Safety

SOIL CONDITIONS

- Soils on the site are influenced by liquefaction
- THREE MAIN ZONES OF SOIL
 - Zone 1: Loose to medium sand. Extends 30 feet below mudline (river bed)
 - Zone 2: Medium dense sand trace silt. Extends from 30feet to 80 feet below mudline
 - Zone 3: Medium dense to dense sand. Extends 80 feet and deeper below mudline

IMPACTS OF LIQUEFACTION

- NO ZONE IS SUSCEPTIBLE TO LIQUEFACTION AT OLE HAZARD LEVEL.
- ZONE 3 IS NON-LIQUEFIABLE AT ALL HAZARD LEVELS
- SOILS IN ZONE 1 AND 2 POTENTIALLY LIQUEFIABLE AT CLE AND DE HAZARD LEVELS
- LATERAL SPREADING:
 - HIGH POTENTIAL FOR LATERAL SPREADING IN ZONE 1
- SEISMICALLY INDUCED SETTLEMENT:
 - POTENTIAL FOR SETTLEMENT IN ZONES 1 AND 2

FOUNDATION DESIGN

- DEEP PILE FOUNDATION
 - 24-INCH OPEN ENDED STEEL PIPE PILES
 - 120 FEET TO 170 FEET LONG
 - Driven into non-liquefiable soil zone
 - Bearing piles designed for cle hazard level
 - USE OF VERTICAL AND BATTER PILES

PROFILE OF SEGMENT A

FOUNDATION DESIGN

PROJECT COST

- PROJECT BUDGET: \$500/sq.ft.
- ESTIMATED BUDGET: \$10 MILLION

CHALLENGES ENCOUNTERED

- Understanding appropriate Load Combinations
- COMPREHENSION OF BATTER PILES
- Understanding full geotechnical aspects
 - SEISMIC IMPACTS ON FOUNDATION AND STRUCTURAL DESIGN

https://www.straitstimes.com/

DELIVERABLES

- APRIL 24TH: PRESENTATION
- MAY 8TH: FINAL REPORT
- DATE TBD: ZOOM CALL FOR QUESTIONS

THANK YOU