1,4 Dioxane Groundwater Contamination Remediation Design for Rennie Farm in Hanover New Hampshire James Murphy, Lucas Theoharidis, Josh Thibeault, Patrick Hamill, Zac Harvell

Faculty Advisor: Dr. Paula Mouser P.E. Project Sponsor: James Wieck GZA P.H. & Steven Lamb P.H.

Abstract

This project was made possible by GZA Geoenvironmental in conjunction with the Civil and Environmental Senior Capstone Design. Throughout the project the design team was tasked with the design of a groundwater remediation program to clean up a 1,4 dioxane contamination. 1,4 dioxane is laboratory chemical that was disposed of improperly near Rennie Road in Hanover, New Hampshire. There have been two projects to clean-up this chemical. The first focused on removing the source of contamination at the main site. The second involved prevention and mitigation of spreading from the site. When beginning this part of the project, the previous one had already been completed and the main site had wells and a treatment system running. Our design team was then tasked with designing a remediation system for the offsite location. This remedial design will focus on containment and treatment of 1,4 dioxane without impacting the existing wetlands. The remediation design consists of a pump and treat system; one pump will be placed in the area with the highest concentrations and two others will be implemented at the southern edge to make sure that the chemical doesn't continue to move north (down gradient). After removing the contaminated water it will be pumped to a small treatment facility where the ambersorb 560 resin will treat the water. Once treated, the groundwater will be reinjected back into the ground.

Scope of Work

Conceptual Design

- Request for Information
- Kickoff Meeting
- Rough Estimate of Calculations for Design
- Conceptual Design Development
- Presentation of Figures of the Conceptual Design

90% Design

- Refine Calculations
- Design of Groundwater Extraction System Components
- Preliminary Cost/Fuel Consumption estimates
- Permitting Approaches
- Pilot Testing Design

100% Design

- Final Design Specs
- Wetland Construction Permit and Groundwater Pumping Permit
- Work plan for Construction
- Final Cost Estimates

Remediation Alternative	Cost (Scale 1-5)	Implementation	Short Term Effectiveness	Long Term Effectiveness	Reliability
Excavate	5	Soil removal	Poor	Poor	Unreliable
Pump and Treat	3	Horizontal and vertical pumping distance	Ok	Good	Reliable
In-Situ – Chemical Oxidation (injection)	1	Injection wells	Ok	Good	Less Reliable
In-Situ – Chemical Oxidation (PRB)	2	Oxidation material	Ok	Good	Average Reliability
Ex-Situ – Bio-remediation	4	Pumping	Ok	Good	Unreliable

Figure #: General Site Boundary and Layout

PERMIT	REASONING		
Alteration of terrain	Road construction		
Pump installation	Installation of pumps for treatment system		
DES surface water discharge	Needed to protect the stream and marsh within the GMZ		
Groundwater discharge	Needed for discharging treated effluent back into groundwater		
Treatment	Descrimed for treatment costeres energies		
Ireatment	Required for treatment system operation		
Stormwater site design	Site erosion will change as a result of road construction		
Wetlands	The GMZ is in a wetland area		

NPI

Feasibility Study

Site

Contamination Site General Area

Permitting

Click to add text

When conducting this feasibility study the design team looked at 5 different treatment options they were; Excavation, Pump and Treat, In-Situ Chemical Oxidation (injection), In-Situ Chemical (PRB), and Ex-Situ Bio remediation.

From the five choices researched Pump and Treat was the option chosen. It was chosen because comparatively it was the most reliable out of them all and the design team felt that the cost feasible for the scope of the project.

Treatment Choice

Treatment Method			C	
Hydrogen peroxide with UV Radiation	 Proven to treat 1 c Mode 	 I Must be p Hydrogen percenter 	Expens retreate oxide re	
Hydrogen peroxide with Ozone	 Proven to treat 1 c Mode 	 Hydrogen perc Bromide will c	Expens oxide ro oxidize ti	
Resin Treatment	 Very Modular/easily s Small changes to influ Simple operation/will 	s of • E vees	Expensi	
Pump	To Treatment Facility	Screening		F Ar
Î				

University of New Hampshire College of Engineering and Physical Sciences

Civil and Environmental Engineering

Well Placement

Offsite Plume

sive O&M cost ed to deal with turbidity sive O&M cost esiduals can pose safety risk eatment

ive capital cost

When choosing a treatment system for the 1,4 dioxane the group chose three widely used methods to compare and then choose the best option. The three options were Hydrogen peroxide with UV radiation, Hydrogen esiduals can pose safety risk peroxide with ozone, and Resin Treatment.

The treatment system chosen was resin treatment, the team felt that this was the best option based on location and water chemistry data. The other two options would to bromate requiring further have caused more treatment to be needed since the hydrogen peroxide would reacted with some of the chemicals in the water. Using resin treatment, we wouldn't have to worry about those new compounds being created as it more filtration oriented. The team also felt that the higher capital cost was offset by the much lower O&M cost when being compared to the other two.

Flow through mbersorb 560 (resin)

Pump back onsite using injection wells