
Hierarchical Structure
• The Lander MDP selects the thrust, feeding it

to the state definition of the stabilizer.
• The stabilizer is an MDP whose inputs and

outputs are axis independent. Ensuring this
type of symmetry effectively reduces the size
of state space by the square root (otherwise
requiring each state field to have X and Y axis)

Landing Throttleable Hybrid
Rockets with Hierarchical

Reinforcement Learning in a
Simulated Environment

Introduction
• Markov Decision Processes model decision

making in discrete, stochastic, sequential
environments; their next state is independent of
the past state given the present state

• Hierarchical reinforcement learning involves
layers of MDPs, maintaining interpretability

• Difficult and interesting problem: continuous and
partially observable state-space, non-linear
dynamics and requirement of real-time control

Objectives
• Land a throttleable hybrid rocket in 3D with

thrust vectoring from varying initial states
• The controller must execute with constrained

CPU, RAM and imprecise sensor data
• Integrate 3D visualization for visual verification
• Land the rocket with vertical velocity < 2 m/s

and zenith angle < 8° from varying initial states
around 30 m at -10 m/s, within 8 seconds

The Approach
• Demonstrates that hierarchical MDPs are

effective for reducing the state space
• Leverages different discretization of the state

space based on specific needs for the MDPs
• Lander: MC (terminalReward = -|velocityZ|)

Stabilizer: TD-0 (reward = - angle^2 + 1)
• Splitting the MDPs allows for specific reward

functions, with a meaningful single objectives

Current Status
• Over 169 commits to the fork of OpenRocket
• Over 10k lines of contributed code
• Developing an expansion to include a Reacher

MDP that will guide the rocket to the landing pad

3D Visualizer
• Integrated OpenRocket with Blender via Python

server leveraging UDP (local network capability)
• Created OpenRocket visualization extension
• Ability to replay scenes and view simulations

System Architecture

Next Steps
• Continue researching the implications of

hierarchical RL in complex decision problems
• Develop a toolbox unifying the OpenRocket RL

with the OpenAI-Gym framework
• Continue extending the customizations in

OpenRocket to finalize the framework
• Release this problem as an RL benchmark

Project Team:
Francesco Alessandro Stefano Mikulis-Borsoi

Advisor: Dr. Marek Petrik
Co-Advisor: Paul Gesel

90% Success after 1000 episodes (1 minute)

RL Contribution
• Developed a standardized RL framework for

OpenRocket, which should encourage the
community to test different MDP formulations,
and specific reward functions

• MDPs are defined with a schema (with fields
such as “stateDefinition”), and custom formulas
can be used to calculate complex state fields,
parsed with recursive descent

• Software development with extensibility in mind
led to the creation of common interfaces for
different learning RL methods (implemented MC,
TD-0, SARSA) - where the rewards can be
specified in the schema

• Crucial modifications to the source code allow for
plotting the state and action fields of the custom
MDPs (with MDP-specific discretization)

• The non-hierarchical version of this discretization
definition succeeded < 10% of the time, even
after an order of magnitude more training
compared to the hierarchical problem
formulation!

Low Exploration (1%)

OpenRocket – Blender 3D Visualizer

