Beliefs We Can Believe in:

Replacing Assumptions with Data in Real-time Search

Maximilian Fickert¹, Tianyi Gu², Leonhard Staut¹ Wheeler Ruml², Jörg Hoffmann¹, Marek Petrik²

Motivation

Real-time Search: agent has bounded time to select next action for execution

Setting is deterministic, single agent

Must efficiently allocate limited number of search node expansions

Classical solutions are often intuitive adaptations of offline search, such as

Searching use beliefs

Risk-based Expansion: given beliefs about top level action values, expand nodes on the frontier under top level action that minimizes risk, the expected regret

Results

Example h*: Transport vs Blocks World

Solution Cost on Planning Domains

RTA* and LSS-LRTA*

What if we designed for real-time planning from scratch?

Contribution

expand under β !

AAAI-19: The Nancy Framework

- Nancy Backup
- risk-based lookahead

AAAI-20: Data-Driven Nancy

- replace assumptions with data
- completeness proof

How to Gather Information?

Where do beliefs come from?

Purpose of search is to gather information to inform decision-making process. Which information on the search frontier should be used to form beliefs about top level actions?

Domain L	LSS- LRTA*	Nancy ('19)	Nancy (P)	Nancy (P+DD)
100 Blocksw. (35) 300 1000	46	67	33	38
	36	46	30	34
	30	44	32	27
100	631	1116	615	496
Transport (60) 300	519	705	559	485
1000	499	607	567	422
Transport (60) $\frac{100}{200}$	48	79	40	31
- · · · · · · · · · · · · · · · · · · ·	47	43	30	34
(unit-cost) 1000	35	36	29	27
Elevators (30) $\frac{100}{200}$	50	55	35	39
	32	40	29	30
$(unit-cost) \qquad 1000$	34	31	27	26

Solution Cost on Heavy-cost Tiles

 $\hat{f} = g + \hat{h} = g + h + \epsilon d$

Nancy: based on assumptions Truncated Gaussian based on h and d Data-Driven Nancy:

replace the assumptions with data!

Offline learning with many parameters

Data-Driven Nancy

Gathering data:

1.Run weighted-A* on random problems
2.Collect all states
2. For each observed by value pick common

3.For each observed h value pick common states4.Compute h*

Example h* belief for unit tiles: h = 10

Completeness Proof

Original Nancy is incomplete due to subtle issue: not guaranteed to see best node from previous iteration.

Our solution is to **Persist** on the previous target state if current lookahead does not yield a better one (with lower f-hat)

Conclusions

- Nancy framework outperforms conventional LSS-LRTA*
- Replacing assumptions with data

Given these search nodes should an agent at A move to B₁ or B₂?

Which Node to Expand?

increase robustness

all uncertainty is due to bounded

rationality

metareasoning about uncertainty pays off, even for deterministic domains!