Dietary Adequacy of College Athletes and Relationship with VO₂ max Ben Petri, BS and Jesse Stabile Morrell, Ph.D.

Introduction

College athletes spend about 20 hours per week training for their sport.¹ All that training requires lots of fuel to keep them at the top of their game.² However, many college athletes are not meeting minimum nutrition requirements.^{3,4} Failure to meet minimum nutritional requirements may not only effect performance, but also could have serious health implications, such as: menstrual dysfunction in females, hypogonadotropic hypogonadism in males and low bone mineral density in both sexes.⁵

What are the nutritional requirements?

According to Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine, athletes should be consuming approximately 5g/kg/day of carbohydrate (CHO) and 1.2g/kg/day of protein (PRO) to meet needs.² Burke et al. confirms this CHO recommendation, and states that males tend to meet this requirement; however, females do not.⁴ Shriver et al. confirms these protein requirements, and reports that most female athletes did meet the requirement.³

What is VO₂ Max?

 VO_2 Max is a calculated measure of physical fitness. Kline et al. wanted to discover a way to measure this from a one-mile walking test. Their testing resulted in a basic formula to calculate VO₂ Max but was only validated for 30-69-yearold adults.⁶ Dolgener et al. replicated this study in college students and found a validated formula for this population. The only variables needed to calculate VO_2 max with the Dolgener formula are gender, weight, finishing time and 60 second heart rate.⁷

Objectives

1	To examine if college athletes	
1.		a
	are meeting dietary	n
	recommendations of	a
		2
	carbonydrate and protein.	а
		k
2.	To see if intake of	• (

carbohydrate and protein is related to aerobic fitness.

Age (Years) Height (cm) Weight (kg) BMI (kg/m² Academic ` Freshma

Sophomo Juni Seni Ot Semester Sprin

> athletes met or exceeded requirements for both CHO and PRO intake. Our findings also show that there were no statistical differences in VO₂ max between CHO and PRO intake groups (p=.517). However, regression analysis indicated that PRO intake was a significant contributor to VO₂ max (β =.112, p=.032).

University of New Hampshire College of Life Sciences and Agriculture

VO₂ Max Compared to Protein Intake

Subject Characteristics of College Athletes

	Male n=97	Female n=179	All n=276	p value
	19.31±1.38	$18.69 \pm .982$	18.91±1.17	< 0.001
)	177.86±7.51	165.57 ± 7.94	169.89±9.7 5	<0.001
)	77.15±14.56	63.33±11.63	68.19±14.3 3	<0.001
)	24.29±3.56	23.04±3.35	23.48±3.47	< 0.001
Year				
an (%)	39.2	57.5	51	
ore (%)	38.1	30.7	33	
or (%)	17.5	6.7	11	
or (%)	4.1	5	4.7	
ner(%)	1	0	0.4	
all (%)	81.4	77.7	79	
ng (%)	18.6	22.3	31	

Continuous variables are presented as mean ± Standard error

Results

• Our findings suggest that 15.5% of male and 39.3% of female athletes failed to meet minimum requirements for CHO and PRO intake, respectively. Conversely, 20.0% of male and 22.0% of female

 \bullet

• Our cross-sectional findings show that **PRO intake may influence** aerobic fitness level; however, future prospective research is needed in order to better understand the impact of dietary choices on athletic performance.

Carbohydrate and Protein Intake Groups

Adequate or High PRO and CHO ■ Inadequate PRO & CHO Inadequate PRO or CHO

Conclusions

Our data are consistent with others and find many **college** athletes are not consuming a nutritionally adequate diet.

Data were collected between 2015-18 as part of the College Health and Nutrition Assessment Survey (CHANAS) at The University of New Hampshire (UNH-IRB 5524). This study is an ongoing cross-sectional study.

Participants

All subjects in this analysis (n=276) were self-identified student athletes enrolled in Nutrition in Health & Well Being (NUTR 400) at UNH. The selected sample was 18-24 years of age, not pregnant, and did not have any medical restrictions.

VO₂ Max Collection and Calculation

VO₂ Max, a measure of aerobic fitness, was estimated via a validated 1-mile Rockport Fitness Test. All data collected were calculated with the validated Dolgener et al. equation of estimated VO_2 Max.

Diet Collection and Categorization

CHO & PRO intake was determined from 3-day food records and nutrient analysis software (Diet & Wellness+). Participants were then categorized into three categories based on intake. Adequate intake was based on 5g/kg/day of CHO and 1.2 g/kg/day of PRO per Academy of Nutrition and Dietetics recommendations.²

Data Analysis

Group difference in VO_2 max were compared using ANCOVA with gender, BMI, and adjusted energy intake serving as covariates. Regression analysis was used to identify significant predictors of VO₂ max. Data are presented as frequencies. Analysis was conducted through IBM SPSS Statistics Version 26.

Acknowledgments

Funded by the New Hampshire **Agriculture Experiment Station** and USDA National Institute of Food and Agriculture Hatch Project 1010738.

References

D119.pdf. http://www.ncaapublications.com/productdownloads/D119.pdf. Accessed April 10, 2020 Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. Journal of the Academy of Nutrition and Dietetics 2016;116(3):501-528. doi:10.1016/j.jand.2015.12.006 Shriver LH, Betts NM, Wollenberg G. Dietary Intakes and Eating Habits of College Athletes: Are Female College Athletes Following the Current Sports Nutrition Standards? Journal of American College Health. 2013;61(1):10-16. doi:10.1080/07448481.2012.747526 Burke LM, Cox GR, Cummings NK, Desbrow B. Guidelines for Daily Carbohydrate Intake: Do Athletes Achieve Them? Sports Medicine. 2001;31(4):267-299. doi:10.2165/00007256-200131040-00003 Tenforde AS, Barrack MT, Nattiv A, Fredericson M. Parallels with the Female Athlete Triad in Male Athletes. Sports Med 2016;46(2):171-182. doi:10.1007/s40279-015-0411-y Kline GM, Porcari JP, Hintermeister R, et al. Estimation of VO2max from a one-mile track walk, gender, age, and body weight. Med Sci Sports Exerc. 1987;19(3):253-259. 7. Dolgener FA, Hensley LD, Marsh JJ, Fjelstul JK. Validation of the Rockport Fitness Walking Test in College Males and Females. Research Quarterly for Exercise and Sport. 1994;65(2):152-158. doi:10.1080/02701367.1994.10607610

Department of Agriculture, Nutrition, and Food Systems Kendall Hall, Durham, New Hampshire 03824

Methods