Farmer trade-offs between pest control and pollinator health: Evidence from a choice experiment with Midwestern Cucurbit Farmers

GRC Presentation Linghui Wu April.21st

Outline

- Introduction
- Goal
- Methods
 - Survey
 - Model Framework (conditional logit and mixed logit)
- Preliminary Results
- Discussion
- Future Work

Introduction

- Pollinator importance to cucurbits farm
- Pollinator worldwide decline facts \rightarrow neonics exposure
- Previous literature on farmers knowledge of honey bees, wild bees and neonics exposure.
 - Farmers vary in their characteristics, preferences (heterogeneity) affects their responses to strategies
- Using a stated-preference method (choice experiment) to elicit farmers preferences

Goal

- Farmers knowledge of pollination services and neonics exposure on insects
 - WTP on changing practices to these impacts;
 - Which new knowledge have net impacts on farm profitability

Survey of Cucurbit Farmers

- Section A. Farm Operations \bullet
 - Crop type, farm size and locations, land uses around farms;
- Section B. Management Practices on Farm lacksquare
 - Current insect and bees management strategies. Knowledge of using managed bees.
- Section C. Integrated Pest Control and Pollination \bullet
 - Knowledge of bee types, bee qualities, pesticides exposure to bees, habitat and other factors affecting bee health
 - Choice experiment
- Section D. Pollinator Habitat
 - Knowledge of pollinator habitat
- Section E. Demographics \bullet
 - Socio-demographic information (age, gender, education, farming experiences)

Choice Attributes

Description of Attributes	Lev
Pest Control (30% decrease in effectiveness, 15% decrease in effectiveness, 0 no change in effectiveness, 15% increase in effectiveness)	-30%, -15
Wild Pollinators (0 no change in population size, 10% increase in population size, 20% increase in population size, 30% increase in population size)	0, 10%, 2
Pesticide Leaching (0 no decrease in pesticide leaching, 10% deacrease in pesticide leaching, 20% decrease in pesticide leaching, 30% deacrease in pesticide leaching)	0, 10%, 2
Managed Pollinators (50% chance of strong hive, 65% chance of strong hive, 80% chance of strong hive, 95% chance of strong hive)	50%, 65%,
Additional Costs (\$/acre increase in spending)	0, 40, 8

Sample CE Question

Please examine the characteristics of each pest management option below. It is important for us to know which option you prefer based <u>ONLY</u> on the described characteristics and costs, though you may typically consider many other factors when making these decisions on your farm.

		OPTION A	OPTION B
Ø	PEST CONTROL	0% <u>NO CHANGE</u> IN EFFECTIVENESS	15% <u>Decrease</u> in effectiven
	WILD POLLINATORS	20% INCREASE IN POPULATION SIZE	10% INCREASE IN POPULATION
井井	PESTICIDE LEACHING	10% DECREASE IN PESTICIDE LEACHING	DECREASE IN PESTICIDI LEACHING
	MANAGED POLLINATORS	80% CHANCE OF STRONG HIVE	65% CHANCE OF STRONG HIV
SE	ADDITIONAL COSTS	\$0/acre INCREASE IN SPENDING	1\$120/aci

Survey Methods

- We followed Dillman et al.'s (2008) mail survey methodology
 - A preview letter describing purpose of the study;
 - The survey instrument;
 - A reminder postcard;
 - A second copy of the survey to non-respondents only;
 - A second reminder postcard to non-respondents only;

The Survey

- Mail survey
- Number of CE question per survey: 3
- Versions of the survey: 4
- Survey period: 2019 February-March
- 106 responses out of 2,543

- Response rate = 4.17%

Summary Statistics of Ind. Chars

Variable	Description	Obs	Mean	SD	Min	Max
Farming Years	The respondent farming years	552	33.86	15.16	1	75
Family Farming Years	The respondent's family farming years	510	84.56	42.49	5	218
Income Source	farming is main source of income (1), otherwise (0)	552	0.75	0.43	0	1
Age	Respondent's Age	552	55.78	12.8	18	80
Gender	Respondent's Gender	552	0.96	0.2	0	1

Data Analysis

- Discrete choice models (conditional logit model and mixed logit model) to • analyze answers for the CE questions (option A, option B and Neither)
- Examine farmers' preferences for insect and pollinators management • strategies through their responses of the choice experiment questions (pest control, wild pollinators population size, pesticide leaching, managed pollinators hives qualities, additional costs)
- Examine whether there is a tendency that farmers prefer to maintain the lacksquarecurrent situation (the status quo effects)
- Examine whether farmers knowledge and individual characteristics have • impacts on their choice responses.
 - Farming experiences, age, gender, education, knowledge of wild/managed pollinators/pesticides.

Model Framework

- Random Utility Theory (Thurstone. 1927)
- Discrete Choice Analysis (McFadden. 1974)

927) 1974)

Empirical Strategy: Conditional Logit Model

- Conditional logit model with alternative specific constant
- $U_{ij} = asc_{ij} + x'_{ij}\beta + z'_i\gamma_j + \varepsilon_{ij}$ - i: individuals; j: options (option 1, option 2, neither)
- x'_{ii} chars change with alternatives and individuals - pest, wild, wq, mngd, cost
- z'_i chars do not change with alternatives but change with individuals - Farm chars; Farming Experience, Socioeconomics
- asc_{ii} intrinsic preference for the alternative
- ε_{ii} captures unobserved characteristics
- Note this case assumes a general stable preferences across individuals •

Empirical Strategy: MWTP

Empirical Strategy: Mixed logit

- Clogit:
 - cannot account for preference heterogeneity among respondents (unless it is related to observables) - IIA property: can lead to unrealistic predictions
- Mixed logit:
 - The mixed logit model extends the standard conditional logit model by allowing one or more of the parameters in the model to be randomly distributed

Iniversity

Empirical Strategy

- $U_{ij} = asc_{ij} + x'_{ij}\beta_i + z'_i\gamma_j + \varepsilon_{ij}$
- Limit of conditional logit model
 - Respondents have same preferences; assumption of independent error terms, IIA
- Mixed logit model overcomes these limitations by allowing the coefficients in the model to vary across decision makers
- $\beta = \overline{\beta} + \sigma_{\beta}$
- Allowing the coefficients to vary implies that we allow for the fact that different decision makers may have different preferences
 - IIA no longer holds

Distribution of each random coefficient

- Random Parameters follow a Normal Distribution
- Coefficient of the cost variable is fixed
 - the distribution of the MWTP for an attribute is then simply the distribution of that attribute's coefficient - restrict the price variable to be positive for all individuals.

Conditional Logit Results

	Conditional L	ogit Model	Welfare Meas		
	Coeff. Mean	Coeff. Std	MWTP	95% Conf	
Pest	.02413925***	0.0068111	2.2397726	[0.883282	
Wild	0.00377964	0.0100459	0.16829186	[-1.549497	
Wq	-0.00020044	0.0095775	-0.19675546	[-1.822358	
Mngd	0.0112075	0.0063511	0.58296432	[0.0156794	
Cost	01082248***	-	-		
ASC	-1.3774019	-	-		
ASC×FY	0.01158988	-	-		
ASC×IS	1.1278204*	-	-		
ASC×Male	0.58253141	-	-		
Ν	552				
Pseudo R2	0.1246				
Log Likelihood	-159.64589				

ure

fidence Interval

75, 3.5962625]

79, 1.8860816]

82, 1.4288472]

44, 1.1502492]

Discussion of Prilimiary Results

- The coefficient of the alternative-specific constant is not statistically significant which suggests that we find no evidence there is a status quo bias.
- Farmers WTP \$2.23 for management that increases the pest control effectiveness
- WTP for managed pollinators, wild pollinators, and pesticide leaching are not statistically significant
 - Even though the WTP are not statistically significant, the WTP for managed pollinators (\$0.58) is higher than WTP for wild pollinators (\$0.17) which means farmers care more about wild pollinators;
 - WTP for pesticide leaching is negative \$0.20 which means farmers are less like likely to pay a small amount to reduce pesticide leaching compared to their current management strategies

Future Work

- Mixed Logit Results
- Knowledge of farmer
- 2nd round of mailing surveys (increase response rate)

