Development of a Low-Cost Non-Dispersive Infrared Spectrometer for Real-Time Nitrous Oxide Detection Zachary Holt¹, Dr. MD Shaad Mahmud¹, Dr. Wilfred Wollheim²

Introduction

<u>Why N₂O?</u>

- Nitrous oxide (N₂O) is the third-most problematic greenhouse gas, and is 265 times more potent than $CO_2[1]$
- N₂O is the dominant ozone-deleting gas emitted by humans [2]
- Agricultural soils are responsible for 75% of U.S. N₂O emissions [1]
- Monitoring soil N₂O emissions is vital to understanding climate impacts as and promoting sustainable agriculture [4]
- N₂O emissions are highly variable, sometimes changing within hours and across single fields [3, 5]

Project Motivation

- Current N₂O sensing methods are costly and offer limited spacial and temporal resolution [3]
- A small, affordable, robust N₂O sensor can be deployed for real-time data collection to capture nuances in N₂O emissions

Technical Background

NDIR Theory

- N₂O absorbs IR light at 4.5μm
- When N₂O enters the chamber, the intensity of 4.5µm light decreases
- This change is proportional to the concentration of gas in the chamber, given by the Beer-Lambert Law

The Beer-Lambert Law relates the absorption of light to the concentration of gas, given by:

$$A = log(I_o / I) = \epsilon lc,$$

A = absorption $I = experimental light intensity, I_o = reference light intensity$ ϵ = molar extinction coefficient l = light path lengthc = concentration of target gas

<u>Adjustable Path Length</u>

Since ϵ is constant, $A \sim lc$. When the path length increases, the absorption increases. For low concentrations of gas, increasing the path length improves the sensor's limit of detection.

- costs

Procedure

• Combined 1 kg healthy soil, 3 tbsp. 21-21-18 fertilizer, and water to saturate soil • Soil mixture placed on 25°C (77°F) heater • Gas captured from soil and directed into sensor • Sensor outlet plugged, so gas accumulates in sensor Serial Data Sensor Soil Emissions Soil Mixture

Heat Plate

1) Department of Electrical and Computer Engineering, 2) Department of Natural Resources and the Environment, University of New Hampshire

Sensor Design

Figure 4: A block diagram representation of the sensor circuitry. A transimpedance amplifier is used to transform the photodiode current into a voltage, and the variable gain amplifier is used to adjust the signal amplitude for maximum ADC resolution.

Preliminary Results

Figure 6: The results of the test.

Figure 5: The experimental setup.

Discussion

• Shows the process of N₂O detection with this sensor

- Concentration is a rough estimate
- N₂O signal was smoothed, as Arduino sampling introduced noise into the signal
- Generated N₂O soil emissions in a controlled environment
- Further work needed to validate these results

Sensor Cost Breakdown	
Part	Cost
Photodiodes	\$228.00
MIR Emitter	\$57.79
Copper Pipe	\$8.05
O-Rings	\$0.30
Microcontroller	\$19.50
Amplifiers and Filters	\$27.20
Other Electronic Parts	\$1.50
Total Cost	\$342.34

Table 1: A breakdown of the sensor costs. Future costs can be reduced using surface mount components.

- savings
- soil N₂O flux
- measurement
- sensing

https://www.epa.gov/ghgemissions/overview-greenhouse-gases [2]A. R. Ravishankara, J. S. Daniel, and R. W. Portmann, "Nitrous Oxide (N2O): The Dominant Ozone-Depleting

[6]"Mississippi State University Notice of Proposed Sole Source Purchase 234-64." Mississippi State University. Accessed https://srm.magic.ms.gov/SAP/EBP/DOCSERVER/LI-COR%20SOLE%20SOURCE%20NOTICE BA3D29F4A75&KPCLASS=BBP P DOC&SAP-CLIENT=10 [7]K. M. T. S. Bandara, K. Sakai, T. Nakandakari, and K. Yuge, "A Low-Cost NDIR-Based N2O Gas Detection Device for Agricultural Soils: Assembly Calibration Model Validation, and Laboratory Testing," Sensors, vol. 21, no. 4, Art. no. 4, Jan. 2021, doi: 10.3390/s21041189

Thank you to everyone in the Real-Time Sensing Lab and the CEPS Makerspace. This project is funded by NHAES CREATE #11HN37.

Contact Information Zachary.Holt@unh.edu

Cost Analysis

Comparison	
Technology	Cost
Quantum Cascade Lasers	\$75,000
LI-COR LI-7820 [6]	\$66,000
Gas Chromatography	\$30,000
Unisense N2O Microsensor	\$6,330
Bandara et al. – "Low-Cost NDIR"	\$2,780
This Device	\$342.34

N₂O Sensor Cost

Table 2: A cost comparison of other N₂O sensing technologies. While each technology has different applications, this design is extremely low cost compared to other designs.

Future Work

• Validate sensor with known N₂O concentrations • Reduce sensor cost and bulk with SMD circuit parts • Use LED emitter for increased life and power

• Integrate with soil N₂O sampling devices to measure

• Combine with a soil sampling device developed in the Real-Time Sensing Lab for total nitrogen

• Add functionality for methane and carbon dioxide

Conclusion

• High spatial and temporal resolution sensors are vital for understanding N₂O emissions • This design allows for low-cost N₂O sensing that can be adjusted to a variety of applications, lowering the barrier to entry for N₂O monitoring

References

] US EPA, "Overview of Greenhouse Gases," Greenhouse Gas Emissions. Accessed: Dec. 28, 2024. [Online]. Available

arison of manual and automated chambers for field measurements of N2O, CH4, CO2 fluxes fi

rbach-Bahl. L. Cardenas, U. Skiba, and C. Scheer, "From research to policy: optimizing the design of a national monitoring syste ένêαμε. C. Hénault. M.-J. Milloux. F. Bizouard, and F. Andreux, "Emissions and spatial variability of N2O, N2 and r

Acknowledgments