

Optimization of Anchoring Isonicotinic acid on TiO₂ NP for Applications in Dye Sensitized Photocatalysis <u>Phoebe Nitchals</u>, Matthew Huebner, Charles Wilson, Christine A. Caputo* Department of Chemistry, University of New Hampshire, Durham, NH 03824

To simplify the process, and decrease costs, we propose to test if pre-

- catalyst self-assembly on TiO_2 ?
- a pre-assembled cobaloxime (Co(dmg)₂(ISO)Cl)?

Solvent	Amount Loaded (nmol/mg TiO ₂)	Std Dev	% Loaded
EtOH	109.51	6.45	43.84%
MeOH	49.17	7.09	19.76%

loading the ISO does not alter the crystallinity of the TiO_2 nanoparticles.

Scanned from 10-60 2 Θ (°) at 1.5 °/min

Concentration (mM)	Average nmol/mg TiO ₂ Loaded	Standard Deviation
0.25	21.94	0.05
2.5	88.70	5.76

morphology when TiO₂ is loaded with [2.5mM] ISO conditions.

ISO@TiO₂

Reduction of Aqueous Protons to Hydrogen with a Synthetic Cobaloxime Catalyst in the Presence of Atmospheric Oxygen. Angewandte Chemie **2012**, *124*, 9515–9518. (3)Lakadamyali, F.; Reisner, E. Photocatalytic H₂ Evolution from Neutral Water with a Molecular Cobalt Catalyst on a Dye-Sensitised TiO₂ Nanoparticle. *Chemical Communications* **2011**, *47*, 1695.

