
Tools for Teams
Anthony Fleury, Dikshyant Gyawali, Lucas Murray, Nathan Steele

Department of Computer Science, University of New Hampshire, Durham, NH 03824

Architecture/Sequence DiagramsIntroduction Implementation/Testing

Evaluations/ConclusionsAttendance Tracking: The bot must allow students to self-
report attendance and generate accurate reports for
instructors.

Efficiency & Accuracy: Attendance tracking should be easy,
efficient, and error-free to minimize distractions and ensure
reliable data.

Breakout Room Management: Faculty should have the ability
to create and manage breakout rooms seamlessly, even for
large numbers of users.

Performance Considerations: The bot must be scalable to
handle high user loads without affecting performance.

Security & Access Control: Permissions must be properly
managed to ensure that only authorized users can access,
modify, or delete breakout rooms and attendance data.

User Interface and Bot Functionality

Project Sponsor: Prof. Matthew Plumlee

Capstone Advisor: Prof. Craig Smith

Discord Staff: Jayme Brannan, Declan Baker

Acknowledgements

Project Design

Screenshot #2 Attendance Tracking FeatureScreenshot #1 List of bot commands

As online collaboration tools have become increasingly
important in education, the University of New Hampshire's
Computer Science (CS) department encountered a challenge
when it became clear that its Discord bot did not align with
university IT policies. This led to the decision to transition to
Microsoft Teams.

Our group, Tools for Teams, is focused on developing a
Microsoft Teams bot that fulfills the Discord bot’s
functionality requirements while adhering to university
standards. Our bot ensures students can reliably mark
themselves present, TAs receive accurate attendance reports
at the end of each lab, and all users can successfully create
and join breakout rooms.

Requirements

Sandbox Testing Environment: We set up a Microsoft
Teams sandbox with ~20 dummy users to simulate real
classroom interactions, with group members and our sponsor
having full administrative access.

Class Channel Simulation: The sandbox includes various
Teams channels designed to mimic those in the UNH CS
server, ensuring realistic testing conditions.

Bot Command Processing: The bot listens for messages in
teamsBot.js, verifies user credentials, and processes
commands formatted as <command> <inputs>.

Command Handling & Responses: Recognized commands are
routed through attendanceCommandHandler.js and
genericCommandHandler.js, which execute the appropriate
functions and return responses to the Teams channel.

• Bot tested in a Microsoft Teams sandbox simulating
classroom interaction.

• Successfully deployed to Microsoft Azure and integrated
into a live Teams environment.

• Functional verification included attendance tracking and
message handling.

• Performance checked using Azure Log Stream to ensure
system stability.

• Live testing ensures the bot handles real-time Teams
interactions reliably.

• Attendance Tracking: Bot records student attendance;
instructors receive accurate reports.

• Deployed & Functional: Bot is currently live and
working in our developer sandbox Teams instance.

• Breakout Room Feature: Not yet implemented, but
access to Azure and Teams enables future
development.

• Next Steps: Finalize breakout room functionality,
continue deployment efforts within the UNH Teams
environment, and develop additional features.

• Our bot currently satisfies two of our three measures
of value by ensuring students can mark themselves
present with confirmation and TAs receive complete
attendance reports. While breakout rooms are still in
development, the foundation is in place to meet this
final objective.

	Slide 1: Tools for Teams Anthony Fleury, Dikshyant Gyawali, Lucas Murray, Nathan Steele Department of Computer Science, University of New Hampshire, Durham, NH 03824

