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Electroencephalography (EEG) is a test that measures the Models: The two model types we used to classity segments were The analysis of this project involved studying the trained
electrical activity of neurons in the brain. EEG recordings Logistic Regression and Decision Trees. Methods from the python decision tree models. In all of the decision trees examined, the
from patients in waking and sleeping states have been studied library SciPy were used to train both model types. root node splits segments by their power value at 0.39Hz. The
to better understand neurological diseases. As part of a larger exact threshold value varied throughout models. Additionally,
ongoing project, our team 1s studying EEG recordings of most of the segments with values below the given power
mice 1n anesthetically-induced comas so that we can further threshold were abnormal and most of those above were WT.
remove environmental variables. For our project, we are It 1s significant that abnormal mice tend to show less activity
using ketamine as the anesthetic and will be studying the at this frequency. In general, the types of abnormal mice we
differences between normal "Wild-Type' (WT) mice and used are known to show more low-frequency brain activity.
different abnormal mice. Our goal 1s to use ‘white-box’ From a biological perspective, 1s interesting to see that at the

machine learning methods to identity markers that can be lowest examined frequency they showed weaker electrical
used to classify these mice.
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100 trained models at segment lengths ranging o R
from 40 to 108 seconds.

Data Collection: Over the summer, trials were ran taking
three-hour EEG recordings of mice in ketamine-induced
comas. Two devices were used for this (EEG1 and EEG2).
Due to the nature of the experiment and availability of mice,
only 9 trials were completed. Data was collected for 6 WT
mice and 3 abnormal mice.

Data Processing: Each mouse sample started at the ketamine

Leave-One-Out Validation: To validate that the patterns and markers
identified can be generalized, tests were ran classitying the segments
where data from all of the mice were used for training except for one of
the WT samples. Another result we analyzed here was the difterence in
accuracy using EEG1 vs EEG2. We hoped to see similar results for both

devices, but since they were so different we opted to only using the
EEG?2 data.
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Fig 5: Example of the first few nodes of a decision tree with 98.1% sensitivity and
87.0% specificity.
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data, but we will need more to confirm their validity. Once we
have enough data, we will be able to train models
differentiating between different types of abnormal mice.
Additionally, we will begin working with the team using
Isoflurane as an anesthetic to train models that will be useful

Spectral Density (PSD) which calculates the signal power at
different frequencies. By using this as our feature vector, we
can train models that will give us information about the
differences between WT and abnormal mice.

Fig 3: Mean and Standard Deviation using EEG1 and EEG2 data for both models while
leaving out the labeled mouse's data. 30 models were trained for each instance.
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Fig 1: Example of 10 seconds of raw EEG recording followed by the PSD of analysis on the decision tree model.

that sample taken using Welch's method



