

Optimizing Cobalt Loaded C_3N_4 Photocatalysts via Heat Exfoliation for Reducing CO_2 Ella Roberts,* Allison St. John, Gonghu Li

Introduction

Graphitic Carbon Nitride (g-C₃N₄)

SAC on N-doped C for

CO₂ reduction

- These catalysts were designed to capture and reduce CO_2 into CO which can be used to synthesize useful chemicals such as hydrogen, methanol, and other liquid fuel products¹ Graphitic Carbon Nitride, g-C₃N₄, is
- an ideal semi-conductor since it's cheap, good at absorbing light in the visible range (400-800nm), and it has an ideal bandgap of 2.7eV² Cobalt Single Atom Catalysts (SACs) complexed on $g-C_3N_4$ have high selectivity towards CO production

Goal: Determine how heat exfoliations impact the surface area, Cobalt SAC loading, and activity of catalysts synthesized from exfoliated g-C₃N₄

Experimental

Graphitic C3N4 Synthesis: Bake 20g Urea with 20mg dextrose at 600°C for 4h²

Heat Exfoliation Procedure: Re-bake the C₃N₄ samples at 600°C for 1h³

Cobalt Loading:

Combine 100mg of C₃N₄, 7.5mL Acetonitrile, and 1.25mg of Cobalt, sonicate, stir for 30min, add 65uL of Triethylamine, stir for 30 min, microwave at 80°C for 2h, centrifuge, rinse solids with chloroform, methanol, and acetonitrile, and air dry4

Photocatalysis:

Mix 1mg of catalyst with 4mL of 4:1 Acetonitrile : Triethanolamine, sonicate, bubble with CO_2 for 20min, stir in front of a 200 mW/cm² lamp with a water filter, and sample the head gas every 30min for 2h for GC analysis⁴

Results

The material's ability to

the UV-Vis data.

absorb light in the visible spectrum

remained unchanged after multiple

exfoliations, as can be seen from

University of New Hampshire, Chemistry Department | Contact: ebr1020@usnh.edu

The BET data displays that samples with more exfoliations saw a significant increase in surface area

SEM images of C₃N₄ with 0, 1, 2, & 3 exfoliations (L-R, topbottom) at 30kx magnification are shown at left

The more exfoliated C₃N₄ samples had more platelike flakes

The catalysts with more exfoliations appeared to more effectively break down CO₂ into CO The jump from exfoliations 1 & 2 to 3 & 4 saw a significant increase in Co²⁺ loading

Discussion

The cheap and simple act of re-baking the C_3N_4 before loading it Cobalt SACs has the potential to increase the C_3N_4 's surface area, increase its loading potential, and yield more effective catalysts

More successive exfoliations should be performed on a larger batch of C_3N_4 to determine whether the surface area could be further increased by a 4th or 5th exfoliation

In future research, the percent yield should be tracked more thoroughly to determine how much material is lost in each bake

Acknowledgements

The U.S. National Science Foundation (#2102655), UIC and the Chemistry Department for supporting my research.

References

- The Editors of Encyclopedia Britannica. Carbon Monoxide | Chemical Compound. Encyclopædia Britannica; 2017.
- 2) Huang, P.; Huang, J.; Li, J.; Zhang, L.; He, J.; Caputo, C. A.; Frenkel, A. I.; Li, G. Effect of Carbon Doping on CO2 - Reduction Activity of Single Cobalt Sites in Graphitic Carbon Nitride. ChemNano Mat 2021, 7 (9), 1051-1056
- Zhong, K.; Zhu, X.; Yang, J.; Mo, Z.; Qian, J.; He, M.; Song, Y.; Liu, J.; Chen, H.; Li, H. Ultrathin structure of oxygen doped carbon nitride for efficient CO₂ photocatalytic reduction. Nanotechnology, 2022, 33 115404.
- Huang, P.; Huang, J.; Pantovich, S. A.; Carl, A. D.; Fenton, T.; Caputo, C. A.; Grimm, R. L.; Frenkel, A. I.; Li, G. Selective CO₂ Reduction Catalyzed by Single Cobalt Sites on Carbon Nitride under Visible-Light Irradiation. Journal of the American Chemical Society 2018, 140 (47), 16042-16047.

