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(1) Organize Weather and Water Treatment Data

(2) Code in Python to create a Correlation Matrix and Machine Learning model
Comparison

(3) Collect data from the code to create a more accurate prediction model

(4) Predict gaps in Nitrogen Discharge Data

Prediction Graphs: (1) RMSE between 3-4, (2) XG Boost and
ANN had the highest lowest error, and (3) predicted values close
to actual Values
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* More complex models point source nitrogen contributions to the Great Bay.
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