ECO-CRAB Engineered Chemical Optimization for Coral Reef Acidity Balancing

P.J. Menis, Katy Cafaro, James Grady Department of Mechanical Engineering

Reef Restoration Concepts

- Is local altering of ocean chemistry feasible?
- Can coral be "fertilized" to protect them against changing ocean conditions?

Ocean Conditions and Coral Threats

- 37 Billion tons of CO₂ are emitted annually
- 1/3rd ends up in the ocean
- 90% of coral are at risk of bleaching
- 30% of those coral will experience bleaching or death

Figure 1: Reef after and before bleaching event

Aragonite Reactors

- Use ocean acidity to dissolve aragonite
- Sized for low flow rates and "long" refill intervals
- Common marine materials and off the shelf parts

Figure 2: Model of calcium reactor

scale and cost

of each reactor

Figure 4: Mesh of CFD simulation

Implementation Limits

amount of reactors reef area

Figure 5: Wave mixing concentration gradient

IDENTIFY OF UNIVERSITY OF New Hampshire

System Power

Wave power is an insufficient source of mixing Green energy sources were found to be insufficient to power the system due to both

Scaling and CFD

CFD study will optimize system organization Multiphase simulation to predict effective range

Limited effective range necessitates excessive

Reactors and concrete coral would make up 40% of