Microbial Community Drivers of Porewater Methane **Concentrations in Arctic Peatland Thaw Ponds**

Dhiraj Naidu, Nathan Blais, Katheryn Bennett, Maggie Krein, Margaret Davis, Sam Bratsman, Jessica Ernakovich University of New Hampshire, Durham, NH - 03824 College of Life Sciences and Agriculture Center for Soil Biogeochemistry and Microbial Ecology University of Montreal

University of New Hampshire

Introduction

- Permafrost is soil that has been frozen for two or more years consecutively, limiting organic matter decomposition¹.
- When permafrost thaws, ponds can form due to the depression of ice-rich ground².
- These ponds are hotspots for methane production³ due to anaerobic conditions and high organic matter content.
- The organic matter is made available for decomposition by methanogens, leading to release of methane (CH₄), a more potent greenhouse gas than CO_2^4 .

Figure 2: Methane cycling in permafrost⁵ Figure 1: Stordalen Mire, Sweden⁴ **Overarching question**: How do variations in the relative abundance of significant methanogens correlate with the net fluxes of CH₄ observed across different depths in Arctic-boreal ponds experiencing permafrost thaw?

Figure 3: Sites of sample collection⁶

Figure 4: Figurative methodology

- Replicate (3x) sediment cores collected from two different types of ponds (shallow and deep) at Stordalen Mire, Sweden.
- CH₄ concentrations were measured from porewater.
- Bacterial DNA was extracted from the sediment and sequenced to quantify the relative abundance of methanogens.

CH₄ porewater.

Microbial DNA

