

Clinical Significance of Burns

Skin maintains homeostasis and protects internal organs

- Burn injuries: 500,000 Americans treated annually [1]
- Pressure and venous ulcers: 3 million Americans treated annually [2]
- Full-thickness wounds requires extensive treatments and can result in scarring as well as permanent loss of function

Current treatment methods are limited by a lack of donor tissue (autologous skin grafts), or graft take (dermal substitutes).

Importance of Revascularization

Vascular integration is critical for graft take and rapid wound healing

- Oxygen and nutrient diffusion from blood vessels is limited to 200µm [6]
- Revascularization occurs via angiogenesis and/or vasculogenesis
- Lack of graft vascularization can result in delayed wound healing [7]

There is a need for a bioengineered skin graft that promotes **rapid vascularization**.

Scaffold Design and Rationale

The goal of this study is to evaluate several different leaf types for their decellularization ability, their perfusable vascular network morphology, as well as their xylem diameters.

Discussion and Conclusions

Fluid Perfusion in LeaVS

Increased drying time improved spatial distribution of

• "Vascular" density of all leaves falls within range of human endothelial vascular density in 2D culture [12] • The bulk perfusion pattern of leatherleaf viburnum and sage may have applications in drug delivery to implants Potential Alternatives to Spinach LeaVS

• Basil and fig both have mean xylem Feret diameters greater than spinach and similar "vascular" densities

• Larger Feret xylem diameters may enhance endothelial cell perfusion through "vasculature"

Future Work

Endothelialize the Leaves Endothelial paracrine signaling to enhance skin | regeneration

In Vivo

Implantation Implantation in full-thickness wound model to evaluate functional recovery

Acknowledgements

• This work was supported by NSF REU grant EEC2150076 (JMC) and NIH grant 1R15AR080988 (GDP).

References

[1] M.P. Rowan et al., Crit Care, 2015.

[2] J.S. Mervis and T.J. Phillips, J Am Acad Dermatol, 2019.

[3] Healthwise staff, Healthwise Inc., 2023.

[4] Healthwise staff, Healthwise Inc., 2018.

[5] Integra Dermal Regeneration Template.

[6] R.K. Jain et al., Nature Biotechnology, 2005.

[7] A. Amirsadeghi et al., Biomaterials Science, 2020.

[8] H.R. Moreira and A.P. Marques, COBIOT, 2022.

[9] J.R. Gershlak et al., Biomaterials, 2017.

[10] E. Grambow et al., Medical Sciences, 2021.

[12] Miyazaki H et al., Scientific Reports, 2019.

Scan for Contact Information

