Al-Powered Smart Agriculture System for Optimized Plant Care

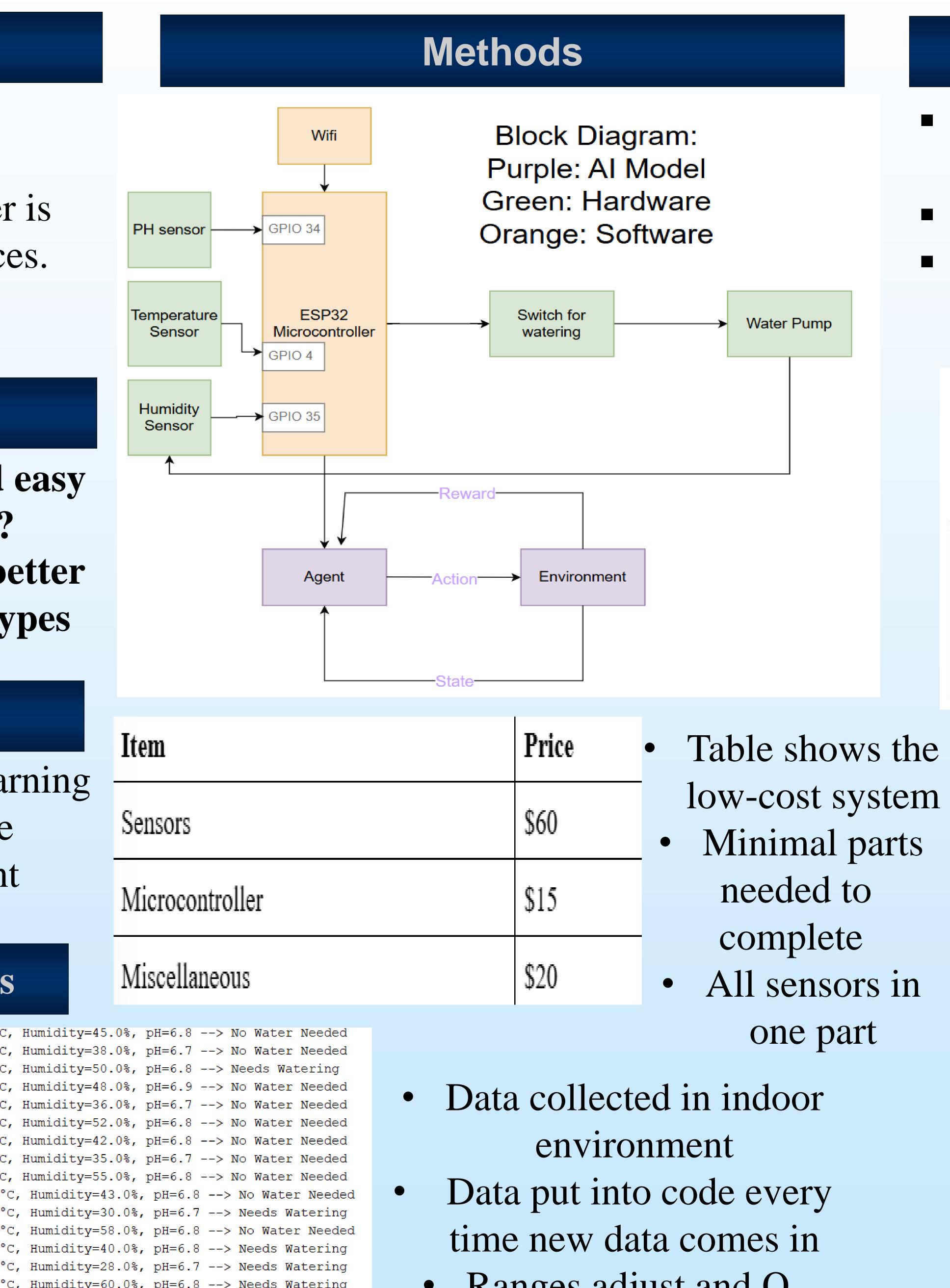
Sean Tobin and Davis Cullen Department of Electrical Engineering, University of New Hampshire

Introduction

- Water waste in irrigation and agriculture
- Roughly 60% of irrigation water is wasted due to inefficient practices.
- AI can solve these problems efficiently.

Research Questions

How can we make a low-cost and easy to use system for all farmers? Why is Reinforcement learning better than other AI models for these types of systems?


Novelty

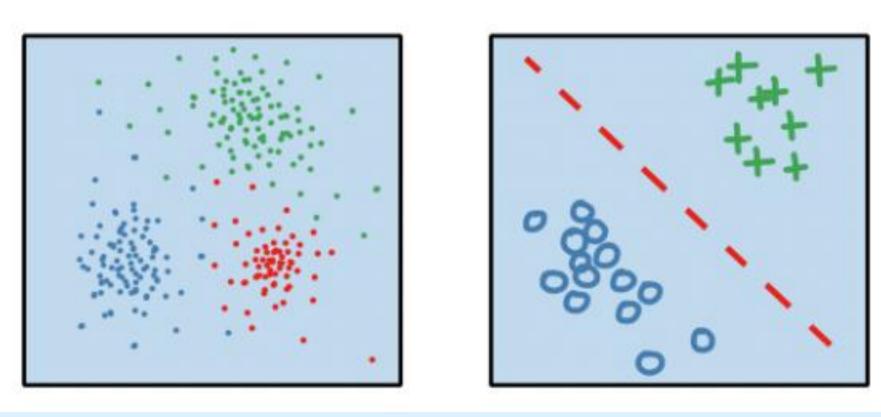
• Implementing Reinforcement learning (Q-learning) into agriculture System can monitor different microclimates

Results & Expected Outcomes

		Soil		Soil
Date	Time		Soil pH	Humidity
		Temp (°F)		(%)
3/4/2025	8:00 AM	72.5	6.8	45
3/4/2025	2:00 PM	75.6	6.7	38
3/4/2025	8:00 PM	71.2	6.8	50
3/5/2025	8:00 AM	71.6	6.9	48
3/5/2025	2:00 PM	77	6.7	36
3/5/2025	8:00 PM	70.3	6.8	52
3/6/2025	8:00 AM	71.1	6.8	42
3/6/2025	2:00 PM	74.3	6.7	35
3/6/2025	8:00 PM	70	6.8	55
3/7/2025	8:00 AM	73	6.8	43
3/7/2025	2:00 PM	76.5	6.7	30
3/7/2025	8:00 PM	70.7	6.8	58
3/8/2025	8:00 AM	72.1	6.8	40
3/8/2025	2:00 PM	77.9	6.7	28
3/8/2025	8:00 PM	71.4	6.8	60
3/9/2025	8:00 AM	71.6	6.9	41
3/9/2025	2:00 PM	75.2	6.8	33
3/9/2025	8:00 PM	71.1	6.8	57
3/10/2025	8:00 AM	72	6.8	39
3/10/2025	2:00 PM	77.4	6.7	27
3/10/2025	8:00 PM	71.2	6.8	61

Row	1: Temperature=22.5°C,
Row	2: Temperature=24.2°C,
Row	3: Temperature=21.8°C,
Row	4: Temperature=22.0°C,
Row	5: Temperature=25.0°C,
Row	6: Temperature=21.3°C,
Row	7: Temperature=21.7°C,
Row	8: Temperature=23.5°C,
Row	9: Temperature=21.1°C,
Row	10: Temperature=22.8°C
Row	11: Temperature=24.7°C
Row	12: Temperature=21.5°C
Row	13: Temperature=22.3°C
Row	14: Temperature=25.5°C
Row	15: Temperature=21.9°C
Row	16: Temperature=22.0°C
Row	17: Temperature=24.0°C
Row	18: Temperature=21.7°C
Row	19: Temperature=22.2°C
Row	20: Temperature=25.2°C
ROW	21. Temperature=21 8°C

C, Humidity=60.0%, pH=6.8 --> Needs Watering C, Humidity=41.0%, pH=6.9 --> No Water Needed C, Humidity=33.0%, pH=6.8 --> No Water Needed C, Humidity=57.0%, pH=6.8 --> No Water Needed C, Humidity=39.0%, pH=6.8 --> Needs Watering C, Humidity=27.0%, pH=6.7 --> Needs Watering Row 21: Temperature=21.8°C, Humidity=61.0%, pH=6.8 --> Needs Watering


Ranges adjust and Qlearning model adapts

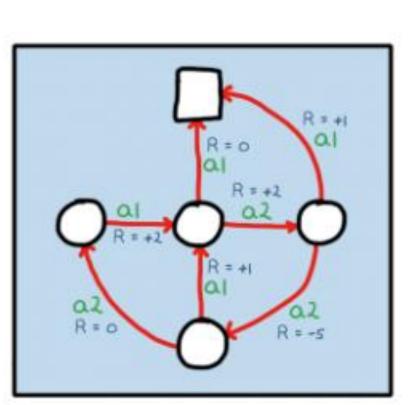
Challenges/Next Steps

- efficiency?

unsupervised learning

- for farming adaptability

University of New Hampshire


Which AI model to use for maximum

 Original microcontroller not working • Figure out how many systems you would need across a whole field/garden

machine learning

supervised learning

reinforcement learning

Conclusion

AI will improve public health and safety

Reinforcement learning will help with

How can cameras help the AI model?

References

[1]E. M. Raouhi, M. Zouizza, M. Lachgar, Y. Zouani, H. Hrimech, and A. Kartit, "AIDSII: An AI-based digital system for intelligent irrigation," Software Impacts, vol. 17, p. 100574, Sep. 2023, doi: https://doi.org/10.1016/j.simpa.2023.100574.

[4]"What is Reinforcement Learning in AI? - Caltech," May 21, 2024. https://pg-p.ctme.caltech.edu/blog/ai-ml/what-isreinforcement-learning

[5]G. Sidiropoulos and Chairi Kiourt, "Reinforcement Learning Agents in Precision Agriculture," Lecture notes in networks and systems, pp. 188-211, Jan. 2024, doi: https://doi.org/10.1007/978-3-031-67426-6_8.

[7]V. C. S.S., A. H. S., and G. F. Albaaji, "Precision farming for sustainability: An agricultural intelligence model," Computers and Electronics in Agriculture, vol. 226, p. 109386, Nov. 2024, doi: https://doi.org/10.1016/j.compag.2024.109386.