

How a Candle Burns: Understanding Combustion Dynamics **Using Free Boundary Problems and Phase Change**

Overview

This project investigates the usability of a simplified theoretical mathematical model intended to mimic qualitative features of combustion. To achieve this, the model will:

- Be a **self-contained** mathematical framework
- Consist of a dynamical system undergoing phase change and material consumption
- Characterize steady-state solutions where material profile and consumption rates are **constant in time**
- Arrive at a system which **mimics features of a candle**
- Introduce students to free-boundary value problems and multi-phase physical models

Methodology

Method of Characteristics: Reduction of a Partial Differential Equation (PDE) to a system of Ordinary Differential Equations (ODEs) by using its characteristic curve

Given a PDE of the function U(x(t), t):

$$U_t + \alpha U_x = k$$

with an initial condition U(x, 0) = f(x) for some real number k and α is a scalar/function of x and t, a time derivative is taken to obtain:

$$\frac{dU}{dt} = U_x \frac{dx}{dt} + U_t$$

where $\frac{dx}{dt} = c$ represents the family of **characteristic** curves of U.

Shock Discontinuities

When characteristic curves intersect one another, a **shock** is created at the point of their intersection.

These shocks represent moving discontinuities in the ODE's solutions.

In this case, the **PDE does not possess a smooth solution** for all times *t*.

Nicole Forno (Student), Dr. Adam Boucher (Advisor) Department of Mathematics & Statistics, University of New Hampshire

Mathematical Modeling

A simplified model of this scenario starts with the **one**dimensional Heat Equation and the assumption that liquid and solid phases have equivalent thermal diffusivities $\alpha = 1$:

$$\frac{\partial U}{\partial t} = \alpha \frac{\partial^2 U}{\partial x^2}, \qquad \alpha = \alpha_{liquid} = \alpha$$

Subject to the initial conditions:

$$x(t = 0) = 0$$
 (1)
 $U(x, 0) = f(x)$ (2)

and boundary conditions:

$U_x(x = t, t) = k$	(3)
U(s(t),t) = 0	(4)
$\lim_{x\to\infty} U_x(x,t) = 0 \ \forall t$	(5)
$\chi \rightarrow \infty$	

Where U(x(t), t) represents the heat of the material at a given distance x from the heat source and time t, and s(t) in (4) represents the speed of the phase change boundary.

Change of Variables

We can perform a **change of variables** on the PDE to account for material consumption. Using the following new variables, we can examine the model in a **moving frame of reference**:

		3
	$\xi = x - \tau = t$	<i>ct</i> (spatial variable) (time variable)
	x = 0	Where c is the rate
$U_l = U > 0$		Using chain rule, we state version of the
liquid phase	x = s(t)	$-cU_{\xi}$
solid phase U _s = U < 0		We also obtain a bo in the moving fran as a stationary Ne
		$U_{x}(x=c)$
gure 1. Physica e two-phase Ste		Thus, we now have dependent on ξ that frame of reference.

 $\alpha_{solid} = 1$

ble)

te of consumption.

we obtain a **steady**he heat equation:

 $J_{\xi} = U_{\xi\xi}$

boundary condition rame now rendered Neumann BC:

= ct, t) = k

ive an ODE **only** that follows a moving

Imposing Neumann boundary conditions (BCs) on the following dimensionless, steady-state, two-phase Stefan problem gives more insight into the PDE's behavior.

ди _	_ 1	$\partial^2 u$	0 <
$\overline{\partial t}$	\overline{St}	∂x^2	0 <
$\frac{\partial u}{\partial u}$	_ <i>K</i>	$\partial^2 u$	s(t)
∂t	\overline{St}	∂x^2	S(l)

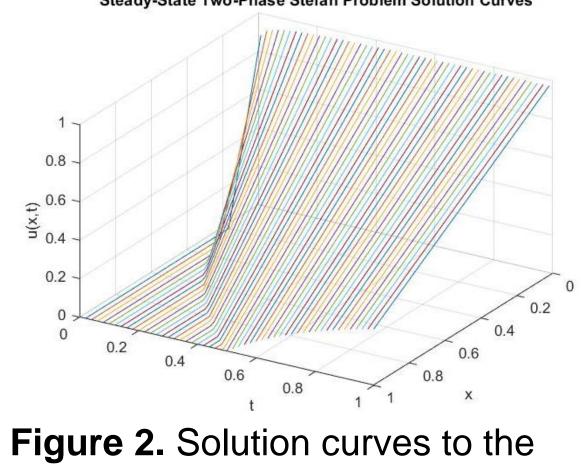
Subject to Neumann BCs for t > 0:

$$u(0,t) = 1,$$

As $St \rightarrow 0$, the following steady-state solution is obtained:

$$u(x,t) = \begin{cases} 1 - \frac{x}{s(t)} & x < 0 \\ 0 & s(t) \end{cases}$$

Note that κ is a dimensionless heat constant and St = $c \cdot \frac{T_1 - T_m}{r}$ is the dimensionless Stefan Number which depends on heat capacity c, initial and melting temperatures $T_1 \& T_m$, and latent heat L.



Stefan Problem in three dimensions.

Future Work

With an ODE now dependent only on ξ and subject to a stationary boundary condition in the moving frame, further analysis of the model will be able to: Fully incorporate the phase change boundary Visualize quasi-steady-state solutions \bullet Analyze the stability of quasi steady-state solutions (characterization of shocks in the PDE) Involve numerical instantiation of the solutions (finite

- difference schemes)

