Introduction

What are PFAS?

- Group of substances used to repel oil, grease, water, heat
- Thousands of different types of PFAS chemicals
- The most notoriously hazardous, PFOA, is studied here

Negative health effects

- Increased cholesterol
- Carcinogenic
- Fertility issues in women
- Decreased vaccine response

What are the current detection methods?

- High Resolution Mass Spectrometry (HRMS)
- Measures molecular weights
- Expensive and tedious process

Objectives

- 1. Design a robust portable spectrometer
- 2. Reliably detect PFOA
- 3. Train machine learning model
- 4. Test in the field

Design

- Small 3D printed housing
- Fit with components for spectrometer
- Raspberry Pi Zero 2 W
- Pi Cam
- Spectroscope
- Broad Spectrum Light

3D Model

Widepread

Significance

- Found in the blood of 99% of Americans
- "Forever Chemicals"
 - Found in water, soil, fish, etc

Current Pollution

- PFAS found in 21 major brands of toilet paper
 - Found in 60% of 10 popular paint brands
 - Used in iPhones & other cell phones until 2021
 - PFAS found in every fish tested in Lake Michigan

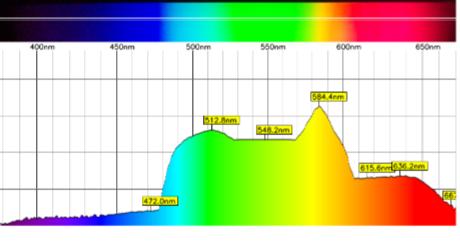
☆ Build

Prototype

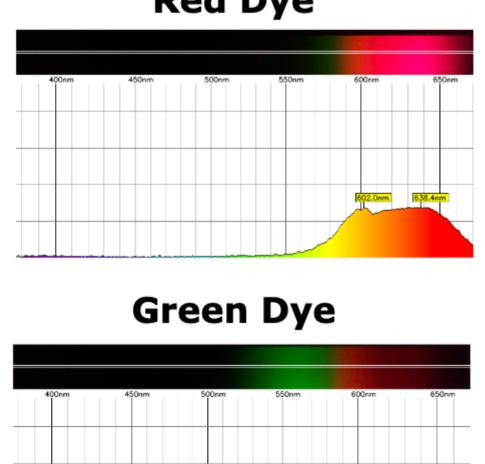
Final Housing

sample from camera

when it hits the cuvette


Adjustable to change distance of

Small slit to concentrate the light


Fit with a broad spectrum Xe bulb

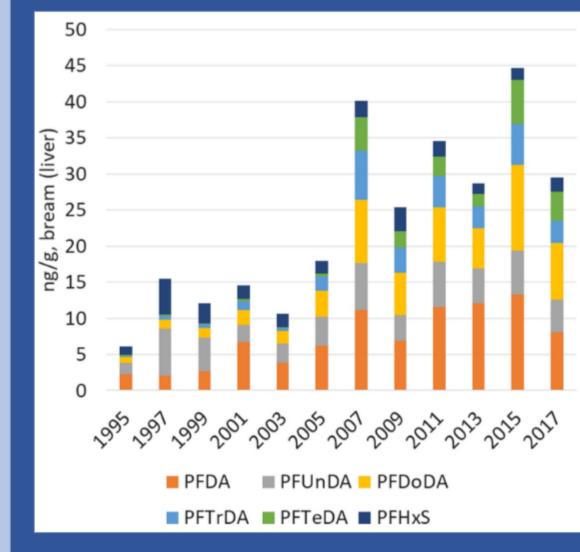
Initial Tests

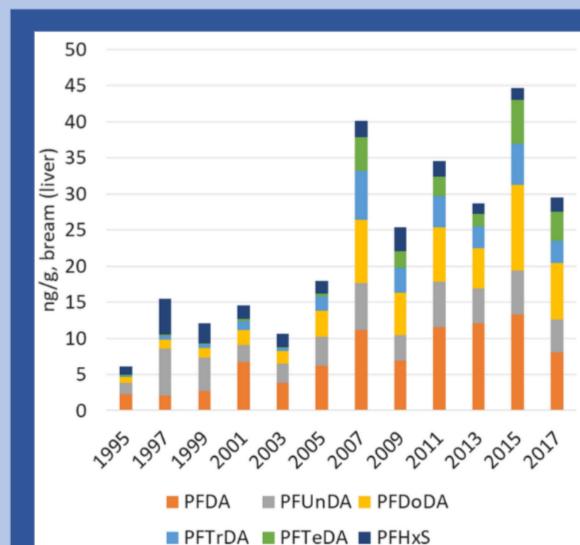
Red Dye

- Broad spectrum light read by spectrometer accurately
- Red dye blocks out all other light, green the same

№ Method

Hemoglobin & BSA


On-Site PFAS Detection using Spectrometry


and a Machine Learning Approach

- Absorbance decreased in presence of PFOA
- Decrease in emission intensity in presence of PFOA

Both in 300 - 400nm range

PFAS Levels Double in Freshwater Fish

Noah Gove

Advisor: Dr. MD Shaad Mahmud

Novelty

- On-site detection
- Low cost spectrometer
- The use of Hemoglobin and BSA for detection

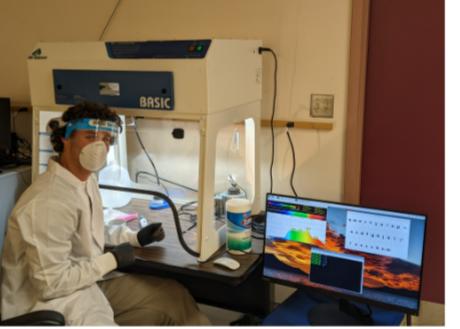
Results

- - Distinct change in peak wavelengths in presence of PFOA
 - New peak wavelength around 471nm
- Less significant change in hemoglobin wavelengths

Baseline	-	514.7nm	-	550.9nm	583.6nm	622.6nm	660nı	
Hemoglobin	-	521.3nm	-	547.4nm	583.6nm	622.6nm	661.4n	
Hemoglobin 250microM PFOA	-	514.7nm	-	550.1nm	583.2nm	621.5nm	660.3n	
Hemoglobin 500microM PFOA	-	515.9nm	-	551.2nm	584nm	622.2nm	-	
BSA	-	512.8nm	532.4nm	552nm	583.2nm	625.8nm	-	
BSA 250microM PFOA	471.3nm	508.2nm	532nm	551.6nm	583.2nm	633.4nm	-	
BSA 500microM PFOA	471.7nm	510.1nm	541.3nm	562nm	582.8nm	626.9nm	-	

Spectrometry

A spectrometer splits light into its individual wavelengths, and then measures the intensity of light from each wavelength.


Made of three main parts

- Broad-Spectrum Light
- 2. A Diffraction Grating
- 3. A Camera

- Best results were from BSA

	Tremogradiii		521.511111		547.41111	202.01111	022.01111	001,411
	Hemoglobin 250microM PFOA	-	514.7nm	-	550.1nm	583.2nm	621.5nm	660.3n
	Hemoglobin 500microM PFOA	-	515.9nm	-	551.2nm	584nm	622.2nm	-
	BSA	-	512.8nm	532.4nm	552nm	583.2nm	625.8nm	-
	BSA 250microM PFOA	471.3nm	508.2nm	532nm	551.6nm	583.2nm	633.4nm	-
	BSA 500microM PFOA	471.7nm	510.1nm	541.3nm	562nm	582.8nm	626.9nm	-
١								

△ Calibration

- Calibrate using fluorescent light
- Use emission lines
- Create calibration quadratic

$$A = \log_{10} \frac{I_0}{I}$$

- Used to calculate the absorption of light by a solution
- A = Absorbance
- I_0 = Intensity of light transmitted through a reference sample, consisting of purely solvent
- I = Intensity of light transmitted through a sample