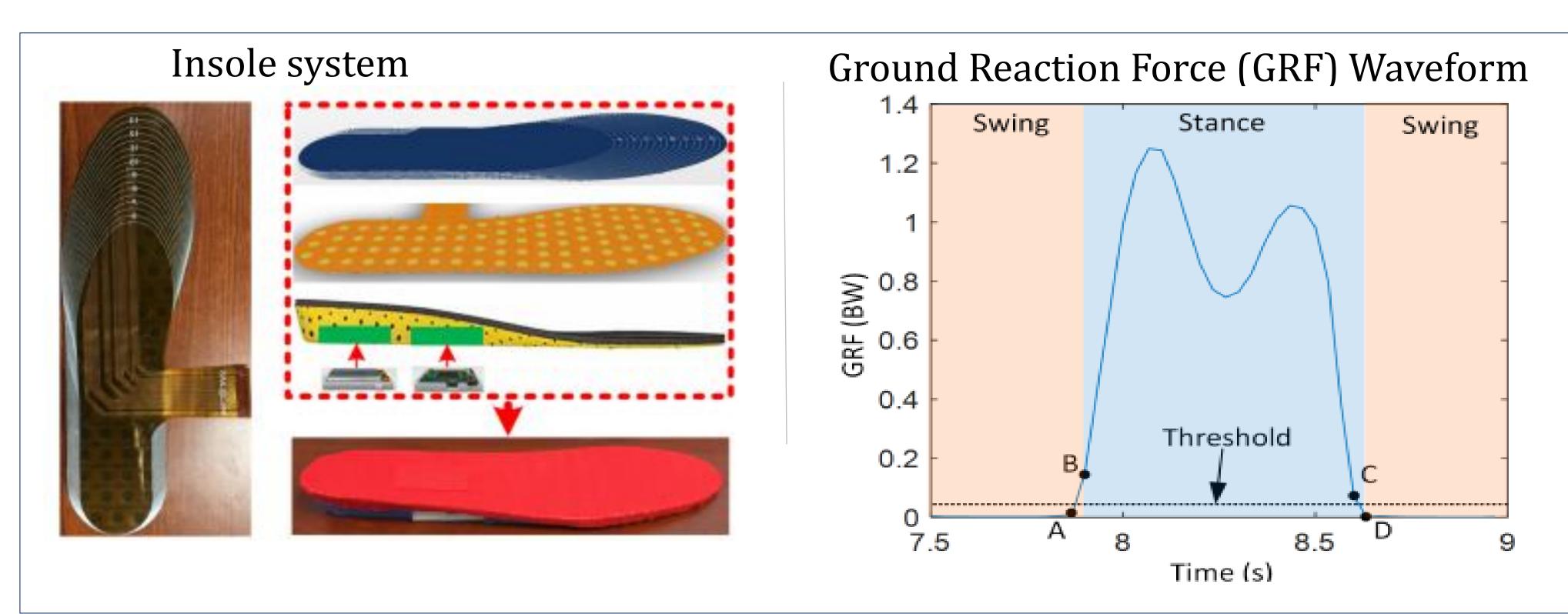


# "Enhanced Smart Insole: Precision Gait Analysis with Optimized Pressure Sensor Placement" <u>Abdul Hannan || Dr. Diliang Chen || Dr. Se Young Yoon || Dr. Andrew Kun</u> Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824

## Introduction

- **Problem**: What are the optimal sensor locations on smart insoles for precise detection of heel-strike and toe-off events, and how can this information enhance gait analysis and refine insole design?
- Solution: Place sensors strategically, analyze locomotion data thoroughly, and validate findings to improve gait analysis accuracy.
- Goal: Optimize sensor placement, reduce count, enhance efficiency, and improve diagnostic capabilities for smarter gait analysis.


## Method

- The smart insole system consists of a flexible pressure sensor array with 96 sensors, adaptable to various foot sizes, enabling transmission of pressure in various foot locations via Bluetooth at 50Hz.
- Ground reaction force (GRF) is calculated at every time step by adding all 96 pressure sensors and the normalized body weight
- A dynamic threshold is developed and used to identify heel strike and toe-off points
- For each walking step. changes of GRF during the heel strike and the toe off are calculated
- The individual sensors with the highest contribution to the GRF changes in that step are identified as the optimal sensors for heel strike and toe-off detection in the step.

## Data

- Eight subjects wearing smart insoles, walking on level ground with 3 different speeds for 90 seconds each.
- Each stride data from each subject are analyzed to extract the top five optimal sensor locations for heelstrike and toe-off detection for each feet and each walking speed specifically.
- The extracted optimal sensor locations from all subjects and all walking speeds are combined to reveal global optimal sensor locations that work best across different individuals and various walking speeds.

#### Wearable system and GRF Waveform



## Results for the Optimized Pressure Sensors

| Walking<br>speed | Heel strikes |         |           | Toe Strikes |         |           |
|------------------|--------------|---------|-----------|-------------|---------|-----------|
|                  | Number       | Optimal | Frequency | Number of   | Optimal | Frequency |
|                  | of strikes   | sensor  |           | steps       | sensor  |           |
| Slow             | 452          | 13      | 98.45%    | 453         | 78      | 54.08%    |
| Normal           | 545          | 13      | 92.11%    | 547         | 79      | 67.46%    |
| Fast             | 643          | 9       | 66.25%    | 644         | 79      | 73.29%    |

#### **Right Foot Result**

| Walkingspeed | Heel strike          |                   |        | Toe strike      |                |           |
|--------------|----------------------|-------------------|--------|-----------------|----------------|-----------|
|              | Number<br>of strikes | Optimal<br>sensor |        | Number of steps | Optimal sensor | Frequency |
| Slow         | 455                  | 9                 | 99.78% | 451             | 60             | 51.22%    |
| Normal       | 548                  | 13                | 91.06% | 545             | 60             | 64.22%    |
| Fast         | 643                  | 13                | 80.56% | 643             | 60             | 68.58%    |

#### Left Foot Result

# 02

Special thanks to: ECE dept. Wearable Sensing and Control System Laboratory

Chen, Diliang. "(PDF) Smart Insole: A Wearable Sensor Device for Unobtrusive Gait Monitoring in Daily Life." Optimal Pressure Sensor Locations in Smart Insoles for Heel-Strike and Toe-off Detection, Diliang chen, www.researchgate.net/publication/310424686\_ Smart\_Insole\_A\_Wearable\_Sensor\_Device\_for\_U nobtrusive\_Gait\_Monitoring\_in\_Daily\_Life. Accessed 18 Apr. 2024.

#### Conclusion

• In total, the most optimal sensors for left foot heel strike and toe-off detection are sensors 13 and 60, with a respective frequency of 89% and 62.36%.

• For the right foot, the most optimal sensors for heel strike and toe-off detection are also sensors 9 and 79, with an occurrence frequency of 82.56% and 65.94%, respectively.

#### Sensors Placement

#### **Sensor locations on the insole**

| 0.000                             | 12                          |                |                |       |
|-----------------------------------|-----------------------------|----------------|----------------|-------|
| ann O                             | XO ma                       |                |                |       |
| $O \cong \mathbb{K} / \mathbb{N}$ | 24 6 20 20 20               | OO.            |                |       |
| $\odot \bullet \odot \times$      | <ul> <li>X M (3)</li> </ul> | 1. 1. 1. 1.    | OOOO           | Que.  |
| XOOM                              | 1844 19                     | XX COM         | 0000           | co bé |
| 11.1.1.1.                         | 20034                       | S.2 S.2        | 15 15 15 15 15 | 200   |
| O MXC                             | Sec. Co                     | 009232         | 1212212        | Same  |
| 1.1                               | Chine Parts                 | MAN CYCY       | COCO COCO      | 13.30 |
| 11. 115                           | Nº 1.1 1.1 1.1              | No No year are |                |       |

#### Acknowledgments

#### References