
Migrating NASA Mission Processing to the Cloud:
The HelioSwarm Trade Study

Elisabeth Drakatos
Space Science Center, University of New Hampshire, Durham, NH 03824

Inefficiencies and modernization initiatives led the UNH
Space Science Center to consider processing and storing
NASA HelioSwarm Mission data in the Cloud. After further
research, it was discovered that a hybrid adapt-to-Cloud
configuration worked best since a full transition had similar
costs to a fully on-premise system. In developing this plan,
Amazon Web Services was the selected Cloud platform to host
the processing on. In this study, many tools on Amazon Web
Services were tested including AWS Batch vs. AWS Lambda for
processing, AWS EC2 for Cloud compute capacity, and
AWS EFS vs. S3 for Cloud storage. In addition to testing the
functionality of the AWS tools, research into pricing strategies
and HelioSwarm specific costs for each service was performed.
Piecing together a set of tools that worked with the AWS
framework and the HelioSwarm Mission's needs was the main
objective as well as the main challenge.

Methods

Process

Our research for this project led us to a solid structure
that we will continue to build upon and integrate into the
HelioSwarm Mission's needs. In order to progress further,
we need to have our AWS Batch process integrate
HelioSwarm specific processing requirements. We also
need to further set up our EC2 instance so that it has the
needed software to spin off during the processing. A main
issue that occurred was the AWS Batch process being
stuck in runnable. This means that the process was
verified to run, but it did not end up running due to
incompatibility. This was difficult to solve because the
incompatibilities were not listed. In order to subside the
runnable issue, we used less customization in our setup.

Introduction Results

Conclusions

Next Steps

The results from our study found that a hybrid adapt-to-
Cloud combination of AWS Batch for processing, AWS EC2
for compute capacity, and AWS EFS for storage worked the
best. AWS Batch was chosen over AWS Lambda because it
allowed for the use of most of our existing code. AWS EFS
was chosen over AWS S3 because it acts more like a regular
file system. One of the main benefits of the Cloud
configuration is the ability to do AWS EC2 Spot Instance
Pricing. This allows you to limit the price that you pay by
only running the process when the price of the instance is
below your pre-determined price limit. Due to the timing
flexibility of the data processing, EC2 Spot Instance Pricing
combined with an adapt-to-Cloud strategy allowed costs to
be less than on-premises. For Amazon Machine Images,
there were troubles creating one that worked with the
AWS Batch processing, so for testing purposes we had to
result to using a pre-made AWS one.

AWS EC2 Spot Instance Pricing Chart

Special thanks to:

• Dr. Jonathan Niehof and Alana Burch
• The UNH Space Science Center

• Configure a Docker image that is compatible with
Ubuntu and AWS ECS.

• Run an AWS Batch process that works with
data similar to the HelioSwarm Mission's data.

• Advance our current codebase that accesses the AWS
tools programmatically.

1. In order to narrow down options, processing
frequency capabilities and storage features offered by
AWS were looked at. During this, pricing research was
necessary because many services offered and charged
more than was needed for the project.

2. Once a service was selected, it was tested on the AWS
website and accessed through Ubuntu. For AWS EC2
instances, compatibility was determined based on the
architecture of the instance, its storage, and its pricing
options.

3. Trials on Ubuntu involved mounting an AWS EFS
filesystem onto an EC2 instance and migrating data
onto it.

4. Investigations into customized Amazon Machine
Images took place to assure spin off instances had the
necessary software and data downloaded onto them
for processing.

5. Then, a Python application was developed that makes
calls to Amazon Web Services using provided request
syntax. Specific functions include creating a compute
environment, making a job queue, and getting
machine images.

6. When our application runs, it launches an AWS Batch
job for processing. On the AWS website, information
about this job can be viewed such as run-time,
instance number, and pricing.

Acknowledgements

m5.large Instance vs. t2.micro Instance Spot Pricing History over 3 Months

Process Controller
Framework

AWS Batch Queue
EC2 Spot Instance

Data Processing
Code

Docker Image

EC2 Instance

	Slide 1: Migrating NASA Mission Processing to the Cloud: The HelioSwarm Trade Study Elisabeth Drakatos Space Science Center, University of New Hampshire, Durham, NH 03824

