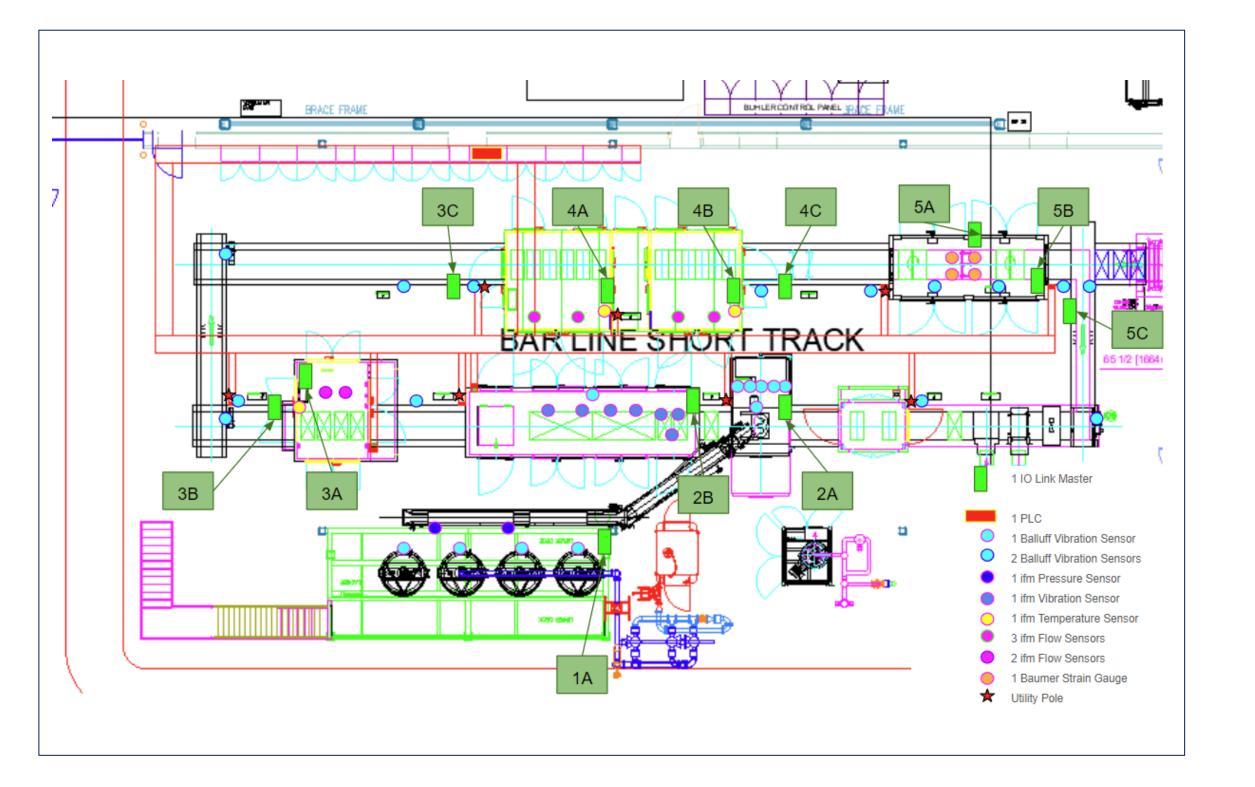


Condition Based Monitoring of Lindt Bar Line

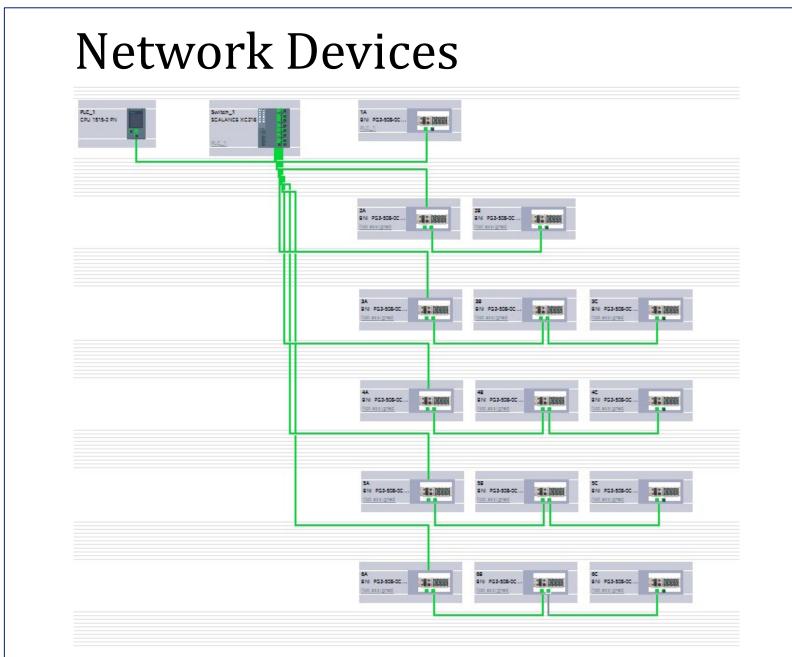
Michaela Harrington

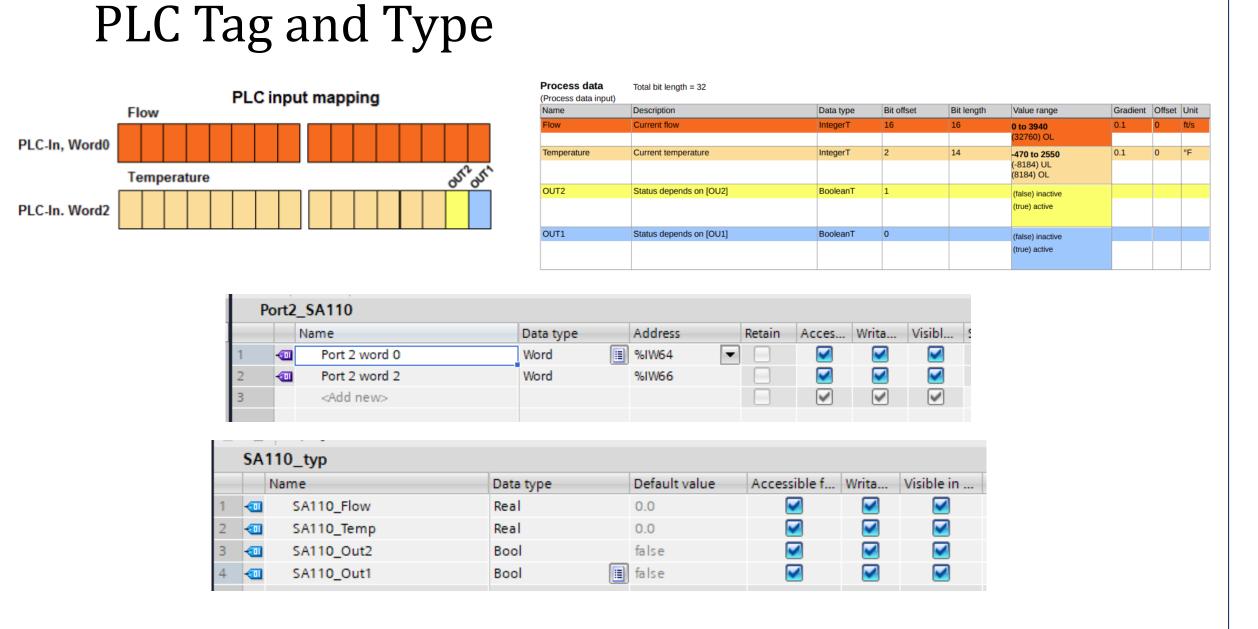
Objectives

- To install and program 83 sensors on the Lindt Bar Line to improve performance visibility
- To tie sensors into Ignition, the SCADA system used by Lindt, to allow data collecting and analysis to be done by employees
- To improve product quality, reduce waste, and move towards preventative maintenance

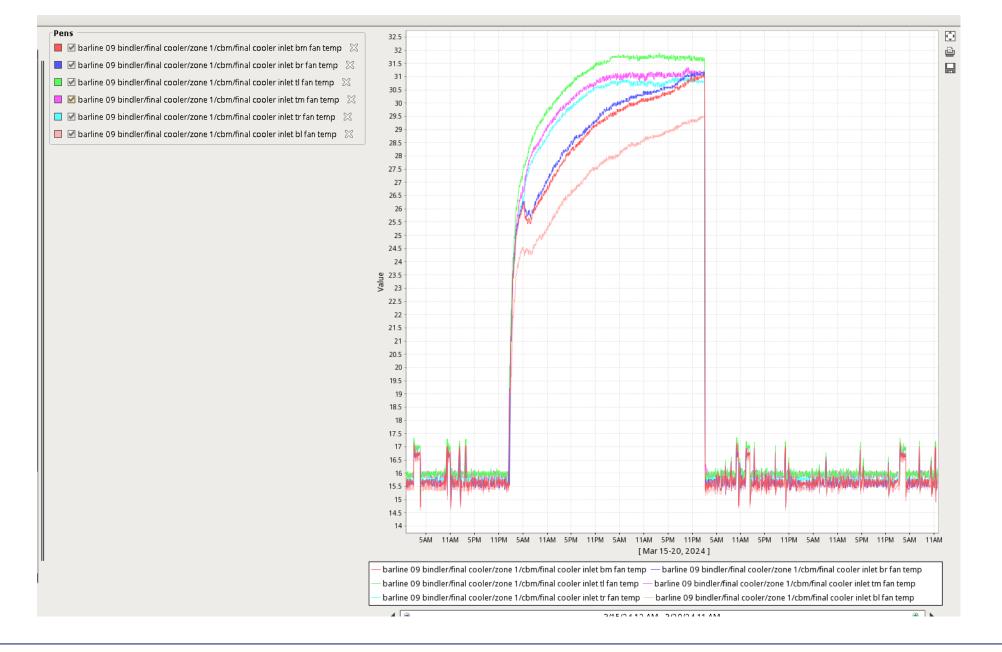

Planning

- Investment Request
- Sensor layout
- Master Layout/ Placement
- Purchase Orders
- Installation Management


	IO-Link Master Plant 4A (P4AN	1)		
	Connection			
Profinet LK1	XC216 Port 5			
Profinet LK2	4B LK1			
Power IN	CBM Power Supply			
Power OUT	4B Power IN			
	Sensor	Location		
IO-Link Port 0	Humidity Sensor (LDH292)	Inside Wall of Final Cooler Inlet		
IO-Link Port 1	Flow/Temp Sensor (SA4110)	Top Left Fan		
IO-Link Port 2	Flow/Temp Sensor (SA4110)	Top Middle Fan		
IO-Link Port 3	Flow/Temp Sensor (SA4110)	Top Right Fan		
IO-Link Port 4	Flow/Temp Sensor (SA4110)	Bottom Left Fan		
IO-Link Class B Port 5	Flow/Temp Sensor (SA4110)	Bottom Middle Fan		
IO-Link Class B Port 6	Flow/Temp Sensor (SA4110)	Bottom Right Fan		
IO-Link Class B Port 7				


Sensor Layout

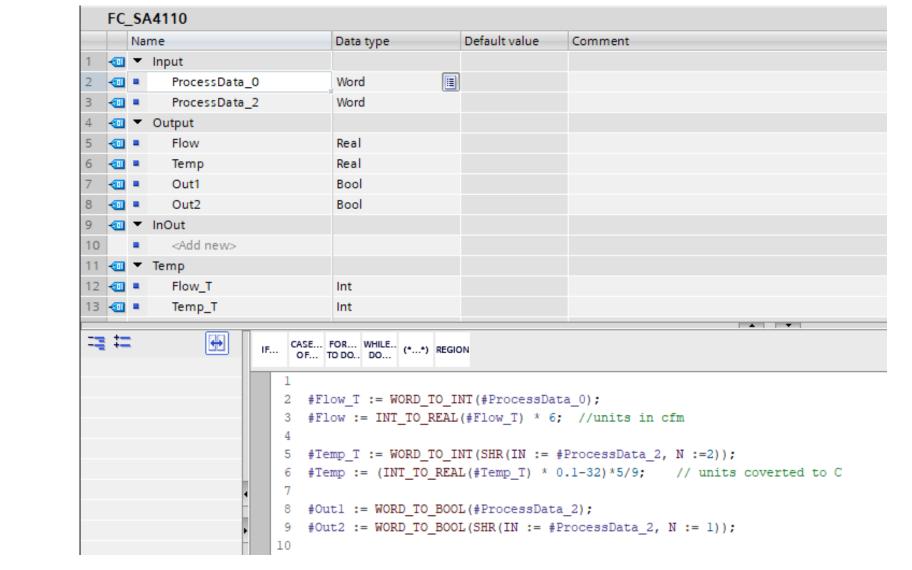
Programming Set Up


The PLC, switch, and 15 IO Link Masters were added and connected according to the connection charts.

The user manuals were used to set up 83 tags and 7 types in the Siemens TIA Portal PLC programming software.

Results

- Graphical data representation of sensor measurements in Ignition
- Alarms set with display path in place


Programming

Data Block

		1	Vam	ie -		Data type	Offset	Start value	Retain	Accessible f	Writa	Visible in	Setpoint
1	4	01	•	Sta	tic								
2	4	01	•	•	LDH292_Shell_Cooler	"LDH292_typ"	0.0			\checkmark	~	\checkmark	
3	4	ш	-		LDH292_Humidity	Real	0.0	0.0		✓	✓	✓	
4	4	Ш			LDH292_Temp	Real	4.0	0.0		✓	✓	✓	
5	4	OI .			LDH292_Status	UInt	8.0	0		✓	✓	✓	
6	4	0	•	•	SA4110_Shell_Cooler	"SA110_typ"	10.0			✓	~	~	~
7	4	ш			SA110_Flow	Real	10.0	0.0		✓	✓	✓	
8	4	ш			SA110_Temp	Real	14.0	0.0		✓	✓	✓	
9	4	ш			SA110_Out2	Bool	18.0	false		✓	✓	✓	
10	4	ш			SA110_Out1	Bool	18.1	false		✓	✓	✓	
11	4	0	•	•	SA4110_Shell_Cooler	"SA110_typ"	20.0			\checkmark	~	\checkmark	✓
12	4	Ш			SA110_Flow	Real	20.0	0.0		✓	✓	✓	
13	4	ш	-		SA110_Temp	Real	24.0	0.0		✓	✓	✓	
14	4	Ш			SA110_Out2	Bool	28.0	false		✓	✓	✓	
15	4	Ш			SA110_Out1	Bool	28.1	false		✓	✓	✓	
16	4	0	•	•	SA4110_Shell_Cooler	"SA110_typ"	30.0			~	~		~
17	4	ш			SA110_Flow	Real	30.0	0.0		✓	✓	✓	
18	4	Ш			SA110_Temp	Real	34.0	0.0		✓	✓	✓	
19	4	ш	-		SA110_Out2	Bool	38.0	false		✓	✓	✓	
20	4	Ш			SA110_Out1	Bool	38.1	false		✓	✓	✓	
21	4	0	•	•	SA4110_Shell_Cooler	"SA110_typ"	40.0			\checkmark	~	~	✓
22	4	ш	-		SA110_Flow	Real	40.0	0.0		✓	✓	✓	
23	4	ш	-		SA110_Temp	Real	44.0	0.0		~	✓	✓	
24	4	ш	-		SA110_Out2	Bool	48.0	false		~	✓	✓	
25	4	ш			SA110_Out1	Bool	48.1	false		✓	V	~	

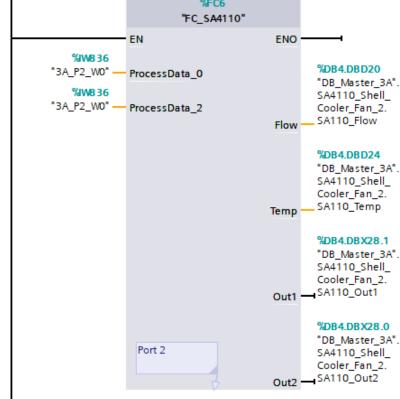
Each line of the Data Block corresponds to a port on the IO Link Master. This is where the measurement from the sensors is displayed in the PLC.

Function Call

The function calls take the words that come into the PLC and separates them into the desired parameters.

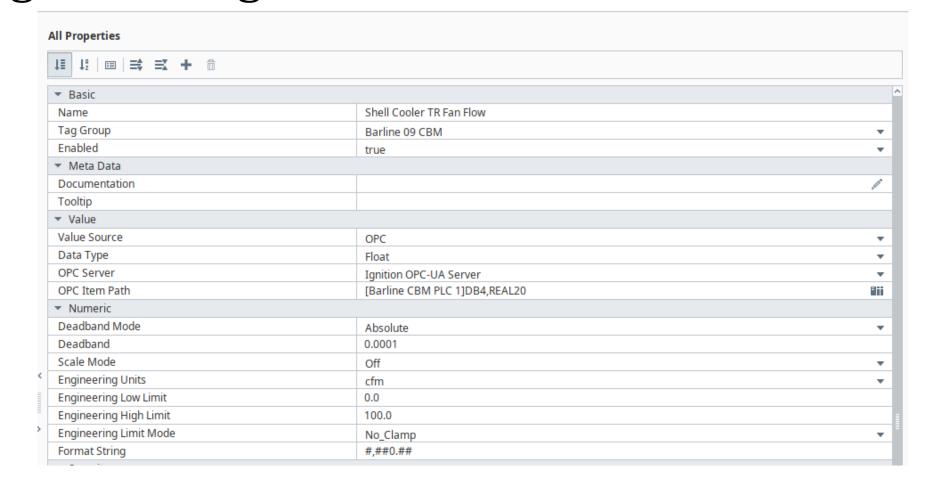
Conclusions

- Everything is connected, programmed, outputting data, and an alarm infrastructure is in place
- Next step is an R&D Trial to fine tune alarm setpoints
- Turn over to maintenance


What I learned... - Manufacturing

- controls - Data types
- Importance of documentation

[.]../../Plant Running


Programming Communication

Main (OB1)

In Main OB1, the function call blocks were added for each of the 83 sensors. This is where the data change from tag to type occurs.

Ignition Tag

Tags were constructed to pull the output data from the PLC into Ignition for centralized data and analysis.

Acknowledgements

Lindt USA

Controls Engineer - Dave Johnson Capital Manager Industrial Engineering - Bill Drumm Maintenance Techs - Dennis Olson and Richard Trimmer Sr R&D Manager - Emanuele Cavaglia Reliability Engineer - Johnathan Millet

Professors - LaCourse, Messner, and Smith

Contractors – Zajac and Florence Electric

