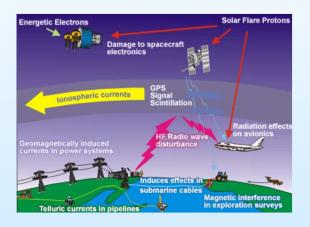
Development of a Low-Cost Ground Magnetometer Station


Power Generation and Signal Processing

Owen Gormley and Hunter Wageling

Department of Electrical Engineering, University of New Hampshire

Introduction

- Earth's magnetic field experiences changes due to ejections from the sun
- Changes in magnetic fields results in currents being induced in electrical systems
- Significant spikes can cause system failures that can have devastating impacts
- Previous Magnetometers have considerable cost and maintenance and consequently are sparsely located
- New system aims at being low cost, low maintenance, and increasing density to achieve better data models

Measuring the Signal

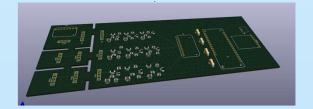
- Previous system was not able to obtain a clear signal of Earth's magnetic variances
 - Analyze the application and settings of the selected sensor
 - Develop a filter system allows for the digital sampling of the signal
 - Establish an appropriate noise floor that will allow for accurate data
 - Signal Characteristics:
 - Frequency Range: 0-40Hz
 - Magnetic Field: (0-500nT)

Filtering

- Analog filtering used to reduce unwanted signals outside of the desired frequency band
 - 6th order Butterworth LPF, 40Hz
 - 60 Hz notch Filter

System Realization

- Sampling Rate was selected at 128 samples per second -
 - Allows for the digital filtering of 60 Hz signals Reduces expense of analog filter
- Noise floor was reduced to 16 mv $\sim 2nT$
- Allows for the capture of substorms

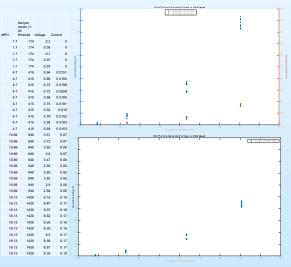

Filter Response

Frequency

Magnitude

PCB Implementation **DRV425** Analog to Digital EVM Magneti Converte MCU 128 sps

Power Problem


Researching Low-Cost Autonomous Magnetometer Stations Charging Solution

University of New Hampshire

- Current System : Solar
- Couldn't reliably charge battery for long time periods
- Supplementary System : Wind
- Purposed solution for testing
 - 50W Wind Turbine Generator (AMG Power Solutions)
 - Voltage and Current Sensor
 - (Arduino UNO and Adafruit INA260)
 - Turbine Control Circuit
 - (PIKASOLA Controller) Blade Assembly
 - Savonius Blade for Higher Torque at Low Wind Speeds

Testing

- Testing was Conducted in the UNH Wind Tunnel
 - 2 multimeters (Voltage & Current), 1 Anemometer (Wind Speed)

Future Work / Final Thoughts

- Wind Turbine with Higher wattage
- Combined Solar and Wind Turbine
- Using Commercial Solution for more reliability
 - Comes with higher cost for reliable solutions

Final Wind Tunnel Test With Controller Circuit

Proof of Concept and Final Testing