Scatter Angle Distribution in the Hard X-ray Polarimeter XL-Calibur

Anna Geho
Department of Physics and Astronomy, University of New Hampshire Advisor: Professor Fabian Kislat, Physics and Astronomy

Introduction

XL-Calibur is an X-ray telescope which will analyze black hole and neutron star systems using polarization data, which has information about the geometry (see Fig. 1).

- The polarization of light refers to the amount that oscillating electric and magnetic fields of light waves are aligned with each other. Within a single wave, the electric and magnetic fields are perpendicular. Polarization degree refers to the amount of light which is polarized, while polarization angle is the angle 90° from the scattering angle
- The angle at which the light scattered is perpendicular to the polarization angle.

[Figu
- XL-Calibur has a detector that measures polarization at the focus of an X-ray mirror. The telescope utilizes:
- A WASP pointing system mounted on a gondola
- A 12 m truss attached to the x-ray mirror.
- A $12 \mathrm{~m} x$-ray mirror which focuses light on the polarimeter.
- A polarimeter and anticoincidence shield which measure scattering angle (See Fig. 2).

[Figure 2]: Side view of polarimeter and X -ray mirror [2]
- The polarimeter consists of a beryllium scattering rod that is 12 mm in diameter.
- The rod is surrounded with CZT (cadmium-zinc-telluride) detectors containing pixels which detect the photons. There are 8 pixels on each side of the scattering rod.
- When light strikes the beryllium rod (see Fig. 3) it scatters and hits the pixels which detect the light
- The image overlaid over the geometry is a point spread function (PSF) of where the light hits the rod. The brighter color corresponds to more photons hitting a location (see Fig. 3).
- Based on what pixel is struck, the angle that the light scattered can be calculated.
- This measurement determines the polarization of the light, giving insights into the source

[Figure 3]: A sketch of the polarimeter facing the polarimeter
rod (radius 6 mm), with the point spread function overlaid on it. There are 8 pixels on each side of the rod which detect photons.
- A function that describes the number of photons detected for a given scattering angle is

$$
f(\psi)=\left(\frac{1}{2 \pi}\right)\left(1+p_{0} \mu \cos \left(2\left(\psi-\psi_{0}-\frac{\pi}{2}\right)\right)\right)[3]
$$

- p_{0} is the true polarization fraction, μ is the modulation factor, ψ is the angle orthogonal to the scatter angle, and ψ_{0} is the phase constant
- To determine the scattering angle of a photon, one calculates the angle as shown from the center of the scattering element to the pixel which detected the photon.
- When the probability distributions of multiple rotation angle-pixel pairs are shown on the same graph, they form a sinusoidal curve. The angle at which the function is at a minimum is the polarization angle (Fig. 4).

Methods

- This project takes into account that:
- The light does not always hit the center of the rod.
- The light does not always hit the middle of a pixel.
- The telescope rotates while in flight.

Using the coding language Python, a set of possible scattering angles were calculated for every location on the rod, for every pixel, and for every rotation angle

- The probability of a given scattering angle given a pixel is $\mathrm{p}(\phi)=\iint P(x(l, z), y(l, z)) \Theta\left(R^{2}-(x(l, z))^{2}-\left(y(l, z)^{2}\right) d l d z\right.$ where $x(l, z)=z-l \cos (\phi)$, and $y=y_{0}-l \sin (\phi)$
- P is the point spread function, and z is the position on an individual pixel, and I is the distance from that point on the pixe to the rod. These quantities are illustrated in Fig. 5.

[Figure 5]: A diagram showing the Integration process. z and I are measurements along the pixel and alon the path of integration, respectively

This is achieved by calculating the scattering angle between the horizontal of the location struck by the light and a given location on a pixel.

- Each angle was multiplied by a weight from the PSF

These data were put into a matrix where the scattering angle probability distribution can be found for any pixel and rotation angle combination.

Results

Figure 5 is a histogram showing the probabilities of scattering angle for all pixels and rotation angles.

[Figure 5]: A histogram showing the scattering angle probabilities for all pixels at a rotation of 0°

Discussion

- The XL-Calibur will be ready to launch on May $8^{\text {th }}, 2024$, and will actually be launched in the time window between then and early July.
- The Python program developed will allow more accurate analysis of polarization data collected from the XL-Calibur during its flight because it accounts for the factors stated in the methods section.
- Given a pixel and rotation angle, data can be extracted that shows the probability distribution for that pixel and rotation angle.
- Next steps include running simulations to test the improvement in polarization analysis with these results.

References

[^0]
[^0]: [1] M. Aoyagi et al. "Systematic effee
 Astropart. Phys. 158 (2024) 102944.
 [2] Q. Abarr et al. "XL-Calibur - a second-generation balloon-borne hard X-ray polarimetry mission, Astropart. Phys. 126 (2021) 102529. 3] F. Kislat et al. "Analyzing the data from X-ray polarimeters with Stokes parameters", Astropart.

