
Rapidly Deployed Temporary Bridge Nicholas Kenney, Matt Fitzsimonds, Sawyer Hanlon *Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824*

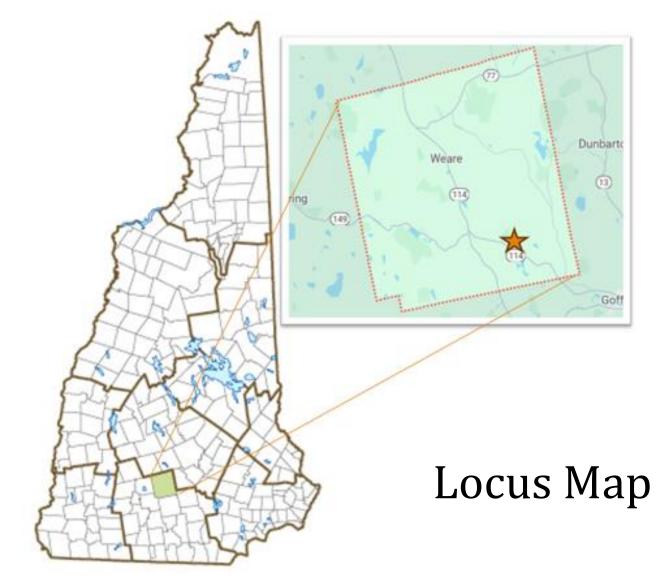
Introduction

The New Hampshire Department of Transportation (NHDOT), along with a team of engineering students and faculty, have undertaken the project of rapidly developing deployable а bridge for emergency temporary purposes during storm events and critical condition red list bridges. This project included an analysis of readily available materials owned by the DOT to design a bridge that can span over or around existing structures to allow traffic to continue and remove live loads while

minimizing cost and time of construction. Services provided by the student team included material inventory, cost analysis, structural analysis, and outlined construction procedures.

Temporary Structures

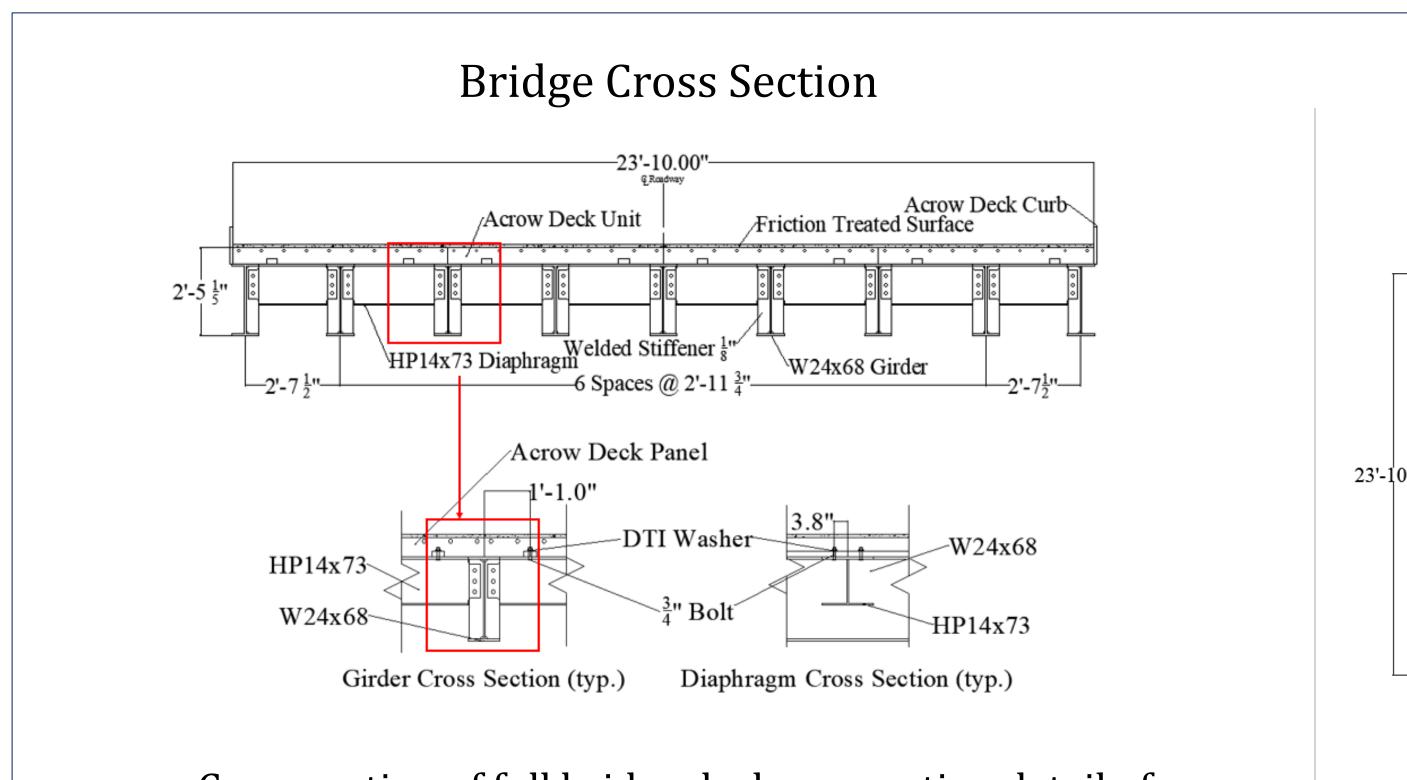
Design Constraints for a Temporary Bridge:


- Bridge overtopping designed to 2-year storm
- 50-foot span bridge, intended to replace bridges with spans between 30 and 50 feet - NHDOT owns 875 bridges meeting this criteria
- Segmented constructed and deconstruction

Challenges:

- Lack of single project location, no geotechnical analysis for abutments
- Theoretical load demand too high for DOT owned steel girders, purchasing steel would be required

Theoretical Location


- Weare, NH. Route 114 over Otter Brook
- AADT of 7,807
- Two lane, box culvert
- Red listed due to culvert deterioration

time • Save on cost

Cross section of full bridge deck, connection detail of diaphragm and girders

Acrow Decking

Prefabricated deck units from Acrow with high friction surfaces will: Decrease construction

Increase reusability

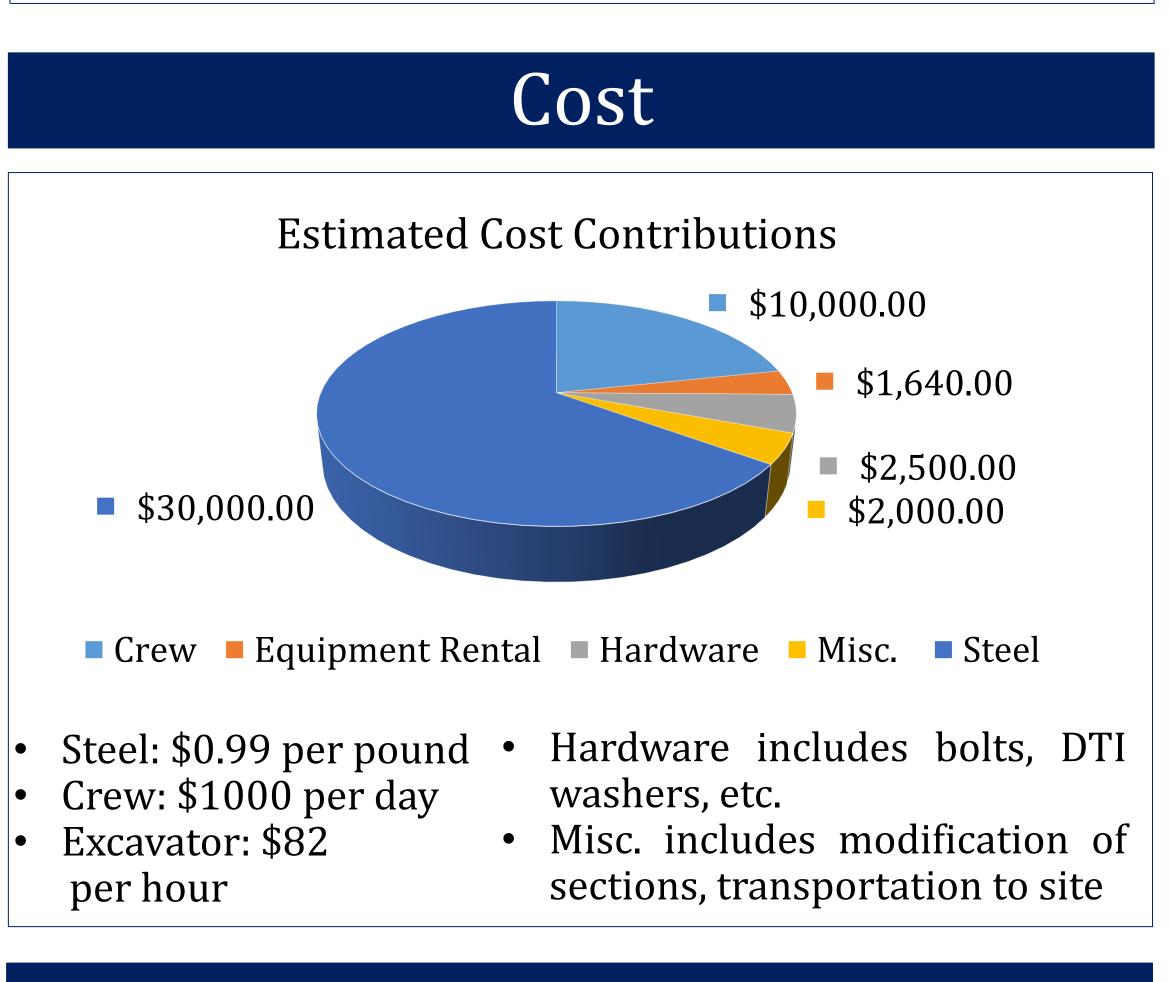
The decision matrix was used in the preliminary stages of the project to decide which bridge alternative to design. Each criterion was given a weight based on it's evaluated importance then each bridge option was given a value of that criterion. A score for each alternative was created by averaging its weighted scores of each respective category.

Dead Load DC			Live Load LL		
Component	Load	oad Unit Component		Load	
Acrow Deck Units	31.15	kip	Truck+Impact Moment	837.12	
Diaphragms	8.70	kip	Truck+Impact Shear	78.08	
Girders	30.60	kip	Lane Moment	200.00	
Stiffener Plates	0.26	kip			
Factored DC Moment			Lane Shear	16.00	
Demand Per Girder	61.38	kip-ft	Factored LL Moment		
Factored DC Shear Demand			Demand on Interior Girder	540.71	
Per Girder	9.82	kip	Factored LL Shear Demand		
			on Interior Girder	78.89	
Factored Loads all assum	e Streng	gth 1 load	Factored LL Moment		
case per AASHTO standards. Live loads consider an HL-93 truck.			Demand on Exterior Girder	416.34	
			Factored LL Shear Demand		
Unsider an IIL-95 truck.			on Exterior Girder	47.33	

Bridge Design

Decision Matrix

PERFORMANCE VALUES				
Criterion	Weight	Full Acrow Bridge	Steel Girders & Timber Decking	Steel Girders & Acrow Decking
Labor Costs	4	2	4	4
Speed of Construction	5	1	5	4
Availability of Materials	4	3	3	4
Efficiency of Space	5	1	4	5
Pedestrian Safety	2	3	4	3
Total	25	1.80	4.05	4.15


Load Calculations

Bridge Deck Layout

		9'-11 ¹ '				
5'-1	$1\frac{1}{2}$ "	Acrow AB602 (typ	. exterior panel)			
0.0"	Acrow AB601 (typ	. interior panel)				
6" Tall Curb						

Plan view of Acrow deck panels

- been set.

Project Spo

Project Adv

nhdot-spec-book-web.pdf

Construction

Erection plan:

Site preparation and soil compaction will be the first step to construction to allow trucks and heavy machinery to safely drive around the site.

Two crane trucks (HIAB X-HiDUO 258 E-7) will be used on tandem on either side of the bridge gap to suspend the girders from either end for placement.

The trucks will be set back from the abutments on a 1 to 1 slope with the placement depth of the abutment plus an extra 6in as a safety factor.

Girders will be modified before placement with attachment points for the decking panels allowing for easy installations with the crane trucks after girders have

Acknowledgements

onsors:	Levi Byers, PE Anthony Weatherbee, PE New Hampshire Department of Transportation
visors:	Yashar Eftekhar Azam, Ph.D. Eshan Dave, Ph.D. University of New Hampshire
	References

ACROW® Corporation. (2016). ACROW® 700XS® Panel Bridge Technical Handbook.

Bridge Design Manual. New Hampshire Department of Transportation. (2015, January). https://www.dot.nh.gov/about-nhdot/divisions-bureaus-districts/bridge-design/bridge-design-manual

Bridge Maintenance. New Hampshire Department of Transportation. (n.d.). https://www.dot.nh.gov/about-nhdot/divisions-bureaus-districts/bridge-maintenance

HY-8 Culvert Hydraulic Analysis Program. U.S. Department of Transportation/Federal Highway Administration. (2022, November 29). https://www.fhwa.dot.gov/engineering/hydraulics/software/hy8/

LRFD Bridge Design Specifications (9th ed.). (2020). American Association of State Highway and Transportation Officials. New Hampshire Department of Transportation. (n.d.). *Transportation Data Management System*. MS2. https://nhdot.public.ms2soft.com/tcds/tsearch.asp?loc=Nhdot&mod=TCDS

NHDOT Standard Specifications. (2016). https://www.dot.nh.gov/sites/g/files/ehbemt811/files/inline-documents/2016-

Steel Construction Manual (16th ed.). (2023). American Institute of Steel Construction. Streamstats. U.S. Geological Survey. (n.d.). https://www.usgs.gov/streamstats