
Database schema overview:

• 'users': Stores user data. Each user can own
multiple cameras.

• 'cameras': Stores camera data. Each camera can
have multiple tracking boxes

• 'tracking_boxes': Defines areas of interest in the
camera's view.

• 'position_data': Stores person count within each
tracking box over time.

• 'room_data': Stores overall person count for each
camera over time.

• ’coord_data': Stores specific coordinates of
detected people.

OccuPi: Dynamic Occupancy Tracking System
Timothy Leveille, Cody Cheng, Oliver Pender, Jae Butler

Innovation Scholars 2023 - 24, University of New Hampshire, Durham, NH 03824

Challenges

Implementation

Future Improvements:

• Moving the processing over to the Raspberry Pi
with a Coral Edge TPU USB Accelerator would
increase security by keeping the image frames on
the Raspberry Pi and dissolve the need to increase
server capabilities with more OccuPi modules.

• Design our own custom PCB to replace the
Raspberry Pi, giving us greater control in
component selection to reduce cost and increase
functionality.

• Migrate from SQLite to PostgreSQL which is a more
scalable database and would leverage its ability to
handle higher levels of traffic.

• Create an even more modular design with
individual batteries in each module allowing for
simpler deployment and more flexibility for camera
placement.

Introduction OccuPi Camera Module

Future Improvements

Acknowledgements

Heatmap Analysis

Thank you to the UNH CEPS
Makerspace staff and TSC Director
Kevan Carpenter for providing us
with access to their state-of-the-
art facility, allowing us to employ
this project in a real-world
environment. Thank you to cohort
leaders Kyle Ouellette and Dr.
Dean Sullivan for their expertise
and guidance throughout this
project.

Process Diagram

Goal: Develop a cost-effective camera system to
monitor occupancy and movement in the UNH CEPS
Makerspace at Kingsbury Hall.

Motivations: High costs of existing foot-traffic
monitoring technologies.

Objectives:

1. Accurately detect people in the space.

2. Stream real-time data to a website.

3. Generate and display a heatmap on the website.

Tracking method: We initially used blob tracking for
people detection but found it inaccurate and
inefficient due to contrast issues. We switched to
Ultralytic’s pre-trained AI, YOLOv8, which proved far
more effective.
Data Management: An erroneous command led to
the loss of a day’s data collection. This underscored
the importance of meticulously managing server
permissions.

Hardware:
 We use a Raspberry Pi Zero 2W and a 160° field of vision camera module to gather room
occupancy data. The camera module is housed in a custom-designed 3D-printed case as shown to the
right.

Software:
 Using a Python script running on the Raspberry Pi, still images are sent to our Flask-SocketIO
server every ten seconds. There, the OpenCV library processes them and the YOLOv8 AI model detects
people and their positions. The detected data is then stored in an SQLite database. We use this data to
generate weekly activity reports and heatmaps, which provide user insights. This information is
displayed on our webpage for user access.

Deployment:
 We deployed our Flask-SocketIO server on Amazon’s EC2 service, used Nginx as a reverse proxy,
and Gunicorn to serve the web pages efficiently. We used these because they are widely used and
considered very effective. This allows our product to be scaled easily.

References

• https://docs.ultralytics.com/mode
s/predict/

• https://flask-
socketio.readthedocs.io/en/latest

• https://python-
socketio.readthedocs.io/en/stable

• https://picamera.readthedocs.io/e
n/release-1.13

• https://docs.python.org/3/library
/sqlite3.html

• https://docs.opencv.org/4.x/

Database Structure

Figure 1. Figure 2.

A clear visualization was obtained from the positional data captured by the camera modules.
Utilizing the YOLOv8 AI model, human presence in the frames was detected, and their (x, y)
positional coordinates were recorded. Subsequently, these coordinates were processed using
Python and Matplotlib, generating the figures presented below. Figure 1 illustrates the two primary
workbenches located within the Makerspace, surrounded by significant patterns of activity. Figure 2
shows a lower density of activity. Nevertheless, the predominant traffic in Figure 2 is observed near
the computer terminal designated for 3D model slicing in preparation for printing.

Positional Density of Students at Main Workbenches Positional Density of Students at 3-D Printers

https://docs.ultralytics.com/modes/predict/
https://docs.ultralytics.com/modes/predict/
https://flask-socketio.readthedocs.io/en/latest
https://flask-socketio.readthedocs.io/en/latest
https://python-socketio.readthedocs.io/en/stable
https://python-socketio.readthedocs.io/en/stable
https://picamera.readthedocs.io/en/release-1.13
https://picamera.readthedocs.io/en/release-1.13
https://docs.python.org/3/library/sqlite3.html
https://docs.python.org/3/library/sqlite3.html
https://docs.opencv.org/4.x/

	Slide 1: OccuPi: Dynamic Occupancy Tracking System Timothy Leveille, Cody Cheng, Oliver Pender, Jae Butler Innovation Scholars 2023 - 24, University of New Hampshire, Durham, NH 03824

