

Self-Assembly of Cobaloxime on TiO₂ Nanoparticles for Solar Driven H₂ Production Matthew Huebner, Charles Wilson, Christine Caputo* Department of Chemistry, University of New Hampshire, Durham, NH 03824

Introduction

- Photocatalytic evolution of hydrogen gas could be the future of green energy
- Anchoring cobaloxime catalyst on titanium dioxide (TiO₂) has been shown to improve electron transfer¹
- We investigate the effects of anchoring isonicotinic acid (ISO) on TiO₂ with regard to the self assembly of catalyst on the semiconductor surface

Research Questions

- Does pre-functionalization of TiO₂ allow for self-assembly of cobaloxime on the surface without the need for full synthesis?
- Does adding all the components of the cobaloxime catalyst on to a solution and stirring lead to the formation of an effective catalytic system?
- Does additional mixing time improve catalytic activity?

Catalyst Structures

Isonicotinic acid

0,0
N
Isonicotinic acid
anchored on
anchored on

Sample #	ISO Conc.	TiO ₂ mass	nmol ISO/ mg TiO ₂
Sample 1	0.025mM	100mg	2.234
Sample 2	0.25mM	100mg	24.07
Sample 3	2 5mM	100mg	120.1

