

Introduction

Spin is the key to determine magnetic properties of the macroscopic matter with specific symmetry. Skyrmion is a vortex-like non-colinear spin orientation found in magnetic materials[1-3]. It exhibits nano-sized particle-like behavior stabilized at finite temperatures. Therefore, it is a promising building block for next generation information storage and memory devices.

studied in FeGe compounds.

lanes, it moves parallel along the current.

• The experiment showed that the helical lane is not merely a path that confine skyrmion to one dimension, but also a highway that boost the speed of skyrmion.

• The figure on the right shows the currentvelocity relation of skyrmion, with the slope being larger for 1D motion.

• This groundbreaking dynamic properties unique to skyrmion confined in helical lanes, and it is essential to understand them theoretically.

Skyrmions in HL move straight in 1D and faster than 2D-motion

Nonlinear Dynamics of Skyrmion in Helical Lanes Koichiro Takahashi, Sergey Pershoguba, Jiadong Zang Department of Physics, University of New Hampshire, Durham, NH 03824

We predict that skyrmion mass leads to a hysteresis in current-induced motion Conclusion • Our model shows that the skyrmion behaves like a particle with emergent mass and induce its hysteresis. • From the washerboard potential, we determined the current density required to overcome the potential, not pinned by impurity potential. • In the range greater than such current densities, there is a linear relationship that is generally inversely proportional to the dissipation factor. **Future Work** References 1] N.Nagaosa and Y.Tokura, *Nature Nanotechnology* 8, 899 (2013). [2] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, *Science* 323, 915 (2009).[3] X. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, *Nature* 465, 7300, 901 [4] J. Müller, J. Rajeswari, P. Huang, Y. Murooka, H. M. Rønnow, F. Carbone, and A. Rosch, *Physical Review Letters* 119, 13, 137201 (2017). [5] R. Knapman, D. R. Rodrigues, J. Masell, and K. Everschor-Sitte, Journal of Physics D: Applied Physics 54, 40 404003 We will work with experimentalists (2021). the prediction of the verify [6] L. Kong, X. Chen, W. Wang, D. Song, and H. Du, *Physical Review B* 104, 21, 214407 (2021).

• We will explore the application

limits of our model and the response of more general impurity potentials and dissipation terms. to hysteresis. [7] D. Song, W. Wang, J.-X. Yu, P. Zhang, S. S. Pershoguba, G. Yin, W. Wei, J. Jiang, B. Ge, X. Fan, et al. (2022).

Theory of Skyrmion's Nonlinear Dynamics

We explore the dynamics of skyrmion under electric current *j* by solving the equation of motion. A skyrmion under a current with no external potential behaves as a massless particle, with the current proportional to its velocity.

Hysteresis: Consequence of Massive Behavior

• In our model, the potential is the helical potential, which is *locally harmonic* in the y-direction, plus the impurity potential.

• Our attempt is to model the impurity potential as a simple cosine

• It has been assumed that skyrmions behave as massless particles, but our model shows that they are described as *massive* particles.

The equations of motion are in the form of a mixture of coordinates xand y. However, by eliminating y, we obtain a second-order differential equation for x alone. This allows the one-dimensional

Emergence of skyrmion mass in helical lanes