

Introduction

- Aggregates were chosen for our experiment because they have a 3D environment which is better at **mimicking in vivo conditions** (collective cell migration and better cell to cell interaction for physiological conditions like tissue remodel, wound healing, cancer metastasis.
- Pluronic coated cone shaped PDMS molds were used to maximize the amount cells that could travel to the bottom of the well after centrifusion and **interact with** each other to form the aggregates.
- Dextran is a FDA approved **synthetic** biomaterial. Methacrylated Dextran undergoes photopolymerization reaction that forms the crosslinked network AKA the hydrogel.

We observed cell migration within 2D and 3D dextran hydrogel, 3D is **more physiologically relevant** and mimics the biological platform better.

Methodology

- PDMS Mold fabrication
- Making Aggregates
- DexMA Synthesis and material Characterization
- 2D and 3D hydrogel making, photo polymerization reaction was used to make Dextran hydrogels, photo initiator Irgacure, RGD peptide was used for cell attachment

biomaterials (FN)

Assembly of Cell Aggregates within Biomaterials <u>Ariyana Greene, Madison Pageau, Jeremiah Sihotang, Maeve White, Rabeya Sharmin Lima, Linqing Li</u> Department of Chemical and Bioengineering, University of New Hampshire, Durham, NH 03824

2D and 3D hydrogel fabrication with aggregates Quantitative Comparison Hydrogel formation and Aggregates seeding and encapsulation Cell aggregates making and their migration in 2D and 3D hydrogel **Mechanical Chartacterization** RGD Shear Storage modulu Shear Loss modulus (Shear Complex modulus ggregates formation after centrifuging a 1000 rpm, 5 minutes, and over night Aggregates Migration on 3D hydroge Aggregates Migration on 2D hydroge Cell migration from aggregates (2D vs 3D hydrogel) Live Dead Staining Live Dead Merged Sample Type Conclusions & Future work Conclusion Confocal images of 2D Aggregates Aggregates within 3D hydrogels recapitulated physiological aspects more accurately. Synthetic biomaterials help tuning mechanical properties, hence make sure of collective cell migration. **Future Work:** Multicellular aggregates (such as HDFs+ HUVECs) assembly observation for more accuracy. Cancer cell inducing for tumor microenvironment analysis within microfluidic device Acknowledgements Dr. Linging Li; Rabeya Sharmin Lima; UNH University Instrumentation Center; Shawna Hollen and the Confocal images of 3D Aggregates Innovation Scholars Program; References 1)Raees, S., Ullah, F., Javed, F., Akil, H. M., Khan, M. J., Safdar, M.,& Nassar, A. A. (2023). Classification, processing, and applications of bioink and 3D bioprinting: A detailed review. International journal of biological macromolecules, 232, 123476. 2)SenGupta, S.,Parent, C.A.,& Bear, JE. The principle of directed cell migration. Nature Reviews Molecular Cell Biology, 22(8), 529-546 3)Heiss, M., Hellstrom, M., Kalen. M., May, T., Weber, H., Hecker, M., ... Kroff, T., (2015). Endothelial cell speroids as a verstaile tool to study angiogenesis in vitro. *The FASEB Journal*, 29(7), 3076-3084 **Fibrin Hydrogel**

30mg.ml 70% DexMA, 30s UV

