
Wireless Inexpensive Bathymetric Logger (WIBL)
Cloud Frontend Integration
Thomas Ackerly,Timofei Nikshych, Chris Sullivan and Cole Glennon

Special thanks to Dr. Brian Calder (CCOM/JHC), Dr. Brian Miles (CCOM/JHC), and Dr. Matthew Plumlee(UNH CEPS)
Department of Computer Science, University of New Hampshire

TestingIntroduction

.

Functional Requirements:
● Upload logger data into cloud
● Handle processed data and return visual format
● Dashboard for viewing trends in data
● Protected by login, not accessible to everyone

Non-Functional Requirements:
● Intuitive flow and responsive navigation in GUI
● Querying data must be simple, statistics dashboard should be easily 

understandable
○ Emphasizing ease-of-use ensures anyone can operate UI. 

Security Requirements (Minimal): 
● Data is not sensitive, but potential for packet sniffing or man in the middle attack.
● Other considerations include unsanitized input. 

WIBL is part of a seafloor digitization project that has already accomplished 
making a cost effective logger to collect bathymetric data. Currently, 
uploading data into cloud involves the use of a command prompt. Because 
this can be lengthy and error-prone for both experienced and laymen users, 
our capstone is currently developing a Graphical User Interface (GUI) to 
automate the process. The goal is to cut the total time to handle files down by 
at least 10%.

As stated previously, a command line interface was used for interacting with 
the system and data upload. The user needed to initialize an S3 bucket, edit 
configurations, create a virtual environment and install multiple packages 
before attempting file upload. The whole process required manual input, 
which is prone to error.

The project success criteria is measured by accessibility, ease of use, and 
the granularity of data. Ease of use is quantified with time spent on the GUI 
and the amount of mouse clicks spent throughout the upload process. The 
result is a 10% decrease in time to initialize the upload environment. 
Compared to the previous method, we can reduce the time it takes for a new 
user to reach a state of upload to 3 clicks. File upload/query would only take 
an additional 4 clicks, due to the addition of parameter filtering.

Completed Items and Features:
● Secure and Persistent Authentication
● Presentable and Easy-to-use Web GUI, hosted on the cloud
● Autonomous execution of shell commands via Web GUI
● Connections to cloud endpoints, providing file upload, download, and 

querying

Testing Methods:
● Docker to initialize both Manager and Frontend one machine
● Heartbeat checks on themselves and between containers to ensure 

connectivity
● Python scripts to load manager with simulated metadata:

○ Used for testing output, filtering, and sorting
● Tests being implemented:

○ Incorporate libraries that mock Amazon Web Services to verify upload, 
modification, and retrieval from S3 buckets.

○ Simulate triggering lambdas to generate visual artifacts from data.

Requirements of the Web GUI

Discussion

Current Status of Project

Future Work:
● Generation of Visual Artifacts

○ Project relies on mariners providing logger data, returning visual 
outputs will enable consumer retention.

● Requires interfacing with AWS Lambdas and S3 Buckets dedicated to 
visualization

Figure 6: Concept 
of Completed 
Dashboard

● View status of file in cloud 
● Statistics dashboard for 

tracking various metrics 

1. GUI sits in between user and cloud, ensures only interface talks directly with 
cloud

2. AWS houses backend data manager to communicate with the web GUI and 
represent current files in S3 buckets

3. Uploading data communicates with specific S3 buckets for different stages of 
data

4. Lambdas are triggered, converts and uploads files into an international 
repository

Architecture of System and Cloud

Figure 5: Full Diagram of System and 
where our project sits with respect to 

current cloud architecture.

Figure 4: Result of query of manager (View Data and Results)

Figure 2: WIBL Web App Home Page

Figure 3: Example of an Artifact Map
given to the Mariners (Go to Artifact Page)

1

2

2

3

3

Filter Functionality via Logger, part of Figure 3

1

4

3

2

4

This GUI is designed for use 
by trusted nodes, independent 
volunteer organizations that 
facilitate data collection from 
mariners and host data upload. 
This data is then uploaded to 
an international archive, and 
mariners are provided visual 
artifacts created from their data 
that illustrate the depth of the 
seafloor.

Figure 1: Data flow from Trusted Nodes to IHO 
Database

3


