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Background and Research Motivation

Magnetic confinement fusion, as the name suggests, is a method in which hot plasmas are

confined by twisted magnetic field lines to sustain a fusion reaction. One of the two most

promising magnetic confinement fusion devices is the tokamak, which forces the plasma

into the shape of a torus.

Figure 1. A photo of the interior of Alcator C-Mod, a small, decommissioned tokamak that holds

the record for largest average plasma pressure at 2.05 atmospheres.

While many wave modes and instabilities that arise in tokamak plasmas are due to kinetic

theory [1], the most disastrous can be avoided by studying these systems using magneto-

hydrodynamics (MHD). However, before any stability analyses can begin, good equilibrium

solutions must be found and solved for, which serves as the motivation for this work. Here

we present a successive over-relaxation solver to the Grad-Shafranov equation.

A Brief Overview of Ideal MHD

MHD can be derived by calculating the various fluid moments from the equation of state

and making assumptions until the equation set is closed [2]. The set of equations for ideal

MHD is,
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where ρ is the fluid density,~B is the magnetic field,~E is the electric field,~u is the fluid velocity,
p is the pressure, e is the internal energy, and~J is the current density.

The Grad-Shafranov Equation

Using the equation set above, a partial differential equation describing equilibrium for a

toroidal plasma can be derived via force balance between ∇p and the Lorentz force. The

equilibrium equation in cylindrical coordinates is,

∆∗ψ = −µ0R2dp
dψ

− F
dF
dψ
, (2)

where,
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∆∗ is called the Grad-Shafranov operator. Physically, ψ is the poloidal magnetic flux per

radian [3]. Solving this equation for ψ yields an equilibrium solution. p(ψ) and F(ψ) are
free functions of any form. F(ψ) is related to the magnetic field in the toroidal direction

by F = RBT.

The Asymptotic Limit of Large Aspect Ratio

The limit of large aspect ratio serves as a good test for the successive over-relaxation code.

The aspect ratio is the ratio of major radius to minor radius, or in the case of Fig. 2, R0/a.
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Figure 2. A diagram of how the flux surfaces of constant ψ are shifted outward as a result of

the Shafranov shift. Note that ~r , a, and R0 are from the center of the outer most flux surface,

and not necessarily from the magnetic axis.

In the limit of large aspect ratio,ψ can be expanded in powers of a/R0 yielding,

ψ(r, θ) = ψ0(r) + ψ̄1(r) cos θ. (3)

A polar coordinate system in the RZ-plane is used to define ψ [2]. The Shafranov shift is also

derived by a similar expansion. The Shafranov shift can be written as,

∆(r) = − ψ̄1(r)

R0Bθ(r)
. (4)

The exact functional form of ψ used in this test was,
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cos θ, (5)

where R0 = 100 m, c1 = .22, and c2 = 15. By increasing a, the radius of the outer-most flux

surface, the magnitude of ∆ increases.

Comparison of Computational and Analytical Solutions
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Figure 3. A plot of the Shafranov shift with respect to minor radius. The analytical solution

for the Shafranov shift is shown by the blue line and the computational solutions are

shown as the orange dots.

As shown in Fig. 3, the analytical solution of the Shafranov shift and the numerical solu-

tions show great agreement for minor radii between 1 m and 6 m. These radii correspond

to a range of aspect ratios that spans from 100 to 16.67. For a > 6, the analytical solution

for ψ(r, θ) exhibits a smaller shift than Eq. 4 suggests.

An Overview of the Code

Since the Grad-Shafranov equation is an elliptic partial differential equation, a modified

second-order successive over-relaxation Poisson solver was used to solve for the function

ψ(R, Z) [4]. Written on a discretized grid, the Grad-Shafranov equation looks like,
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where δR and δZ are the step sizes of the grid, Ri is the distance from the symmetry axis at

the point ψi, j, and µ0RiJi, j is the source function at the same grid point as ψi, j. The code is

complete enough to test against analytical solutions to the Grad-Shafranov equation (shown

in the center column). Below we discuss how modifications to this base code are made to

better emulate real-world tokamaks.

Applications to Real-World Tokamaks

Tokamaks often have shaping coils and Ohmic heating solenoids to modify the shape of the

plasma edge to aid in confinement [3]. To account for these shaping coils, the Green’s func-

tion for an axisymmetric current can be used to find these coils’ contributions to the value

of ψ on the computational boundary [3, 5]. Once the successive over-relaxation code has

run, critical point analysis can be done to update the plasma current density. The plasma’s

contribution to ψ on the computational boundary can be recalculated via the same Green’s

function [3, 6]. This process is then iterated until convergence is reached, as show in Fig. 4.

The outer loop is called Picard iteration, the inner loop is the successive over-relaxation

method described previously.

Figure 4. A flowchart showing the code’s

nested loop structure.
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Figure 5. A free-boundary solution with an

Ohmic heating solenoid and two poloidal field

coils located outside of the computational

boundary.

Fig. 5 shows an example D-shaped plasma cross-section in a simple tokamak with an Ohmic

heating solenoid and two outer poloidal field coils. Future work with this project could be

to design a coil set-up that would make for a good comparison to analytical solutions.
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