# F4kEOUT: Leveraging Cache Contention for Cross-Thread Data Leakage

## Skylar Gagnon

cng1022@usnh.edu Advised by Dr. Dean Sullivan

## Introduction

#### Motivation

With the rise of cloud computing and resource sharing, securing hardware means protecting billions from data theft.

#### Goals

- Develop a timing channel using 4k aliasing
- Expand to a 4k aliasing side channel attack
- Create a transient variant of the side channel

#### Why

- Prior works only leak crypto keys
- No transient variants of a 4k side channel
- Break transient attack mitigations
- Expose new transient attack surfaces

## Background

**The Cache:** Where a computer keeps data for rapid retrieval. Two actions can be performed: storing data (write) or accessing data (read).



**4k Aliasing:** When multiple requests are made to the same cache set at the same time, some may be denied and reissued.



## Department of Electrical and Computer Engineering, University of New Hampshire, Durham NH



#### Only bits 11:6 cause aliasing, meaning only **6 bits** can be used for encoding.

Optimal Parameters

#### **Parameter 1: Action Pairs**

- Victim (V) or Attacker (A)
- Perform read or write action
- Addresses can alias (4k) or not (No-4k)

#### **Parameter 2: Instruction Count**

- The victim and attacker can both perform any number of actions (instructions), which in turn can affect the cycle penalty
- A bigger penalty means better transmission

### Time Constraint

#### How many writes?

- Transient variant only
- Victim instruction count has a cap
- Maximum\* is about **350 instructions**
- \* on an 11th Gen Intel Core i9-11900K

### Data Encoding

No

|     | A-Read |                       | A-Write |         |
|-----|--------|-----------------------|---------|---------|
|     | V-Read | V-Write               | V-Read  | V-Write |
| -4k | 67 ± 2 | 71 ± 2                | 75 ± 2  | 84 ± 4  |
| łk  | 64 ± 2 | <mark>265 ± 10</mark> | 77 ± 2  | 84 ± 4  |





#### **F4kEOUT** Attack

#### Accomplishments

#### Recal

96.8% Evaluated on 11th Gen Intel Core i9-11900K running Ubuntu 22.04 with kernel version 6.5.0-17

### **Transient Variant**

#### **Action Pairs**

### **Instruction Count**

### **Software Mitigation Options** • Disabling Simultaneous Multi-Threading (SMT) • One Party per Core Policy

### **Future Work**



## University of **New Hampshire**

## Results

• Victim performs writes based on secret data • Attacker monitors the cache using reads • Based on timing, victim data is leaked

Successful across address spaces

• Successful across threads

• Able to transmit **1.023 KB/s** accurately

| l      | Precision | Accuracy | F1-Score |
|--------|-----------|----------|----------|
| ,<br>D | 99.0%     | 99.4%    | 97.8%    |

• Should be possible based on experiments

• Currently, no working proof of concept

## Discussion

• Higher No-4k average in (A-Read, V-Read) test • Difference in averages in (A-Write, V-Read) test

Aliased instructions faster in some cases

## Conclusions

With the current state of hardware, multitenant cloud services are **not safe**.

Hardware Mitigation Options • No aliasing across threads Cache Partitioning

 Implement end-to-end attacks • Explore unexpected behavior from experiments • Resolve issues with the transient variant