Searching with Distributional Heuristics

Stephen Wissow, Advisor: Wheeler Ruml

Reason Under Uncertainty

bounded suboptimal:

- cost bound
- probability of finding goal within bound under given node

anytime:

which node will lead to better solutionsearch effort under given node to goal

contract:

cost-to-go under given nodesearch effort under given node to goal

Contract Search

Objective:

- return best solution possible, subject to absolute time (or expansion) bound.
 Current SotA:
- Deadline-Aware Search (Dionne et al. SoCS-11) is a best-first, priority queue based contract search algorithm that must estimate two unknowns:

 \hat{d} : error-corrected distance-to-go

Related Problems

Bounded Suboptimal: Fickert et al. (AAAI-22) formulate the work of bounded suboptimal search as comparing two distributions:

 $B_{cost}(n)$: solution cost under n B_{bound} : the cost bound itself

 \dots but their best algorithm, RR-d, uses unprincipled round-robin queue alternation.

• Can uncertainty help decide proper strategy? Anytime: Thayer et al. (SoCS-12) defined

In order to reason under uncertainty:
need better measures of uncertainty
need to better exploit those measures

New Distributional Heuristic

A rational search algorithm should prefer:

low uncertainty when heuristic is lowhigh uncertainty when heuristic is high

Heuristic belief variance can be assumed from single-step error (Fickert et al. IJCAI-21) but requires hyperparameter

New: *h_{FFrand}*

• don't assume, measure!

- parameterless distributional heuristic
- randomizes tie-breaking in FF

distribution estimation via sampling
see comparison below with other heuristics for start state of IPC benchmarks (Wissow & Asai 2022, unpublished collaborative work) Δe : average expansion delay

DAS also pathologically prunes all open nodes as unreachable—room for improvement! Our Deadline-Aware Beam Search (DABS):

• dynamically adjusts width of parallel hill-climbing

ullet only needs to estimate \hat{d}

DABS beats DAS and ARA*:

anytime objective as minimizing time between solutions, but this definition is incomplete:

an anytime algorithm also performs better than another by returning lower cost solutions, even if on the same solution schedule.

• Can uncertainty help balance earlier solutions with better ones?

Thanks to the NSF-BSF program for support via NSF grant 2008594, and to the UNH Department of Computer Science. This work was also supported through DTIC contract FA8075-18-D-0008, Task Order FA807520F0060, Task 4 - Autonomous Defensive Cyber Operations (DCO) Research & Development (R&D).

 h_{FFrand} : 10 different seeds per problem (sorted within domain by h_{FF})

400 -					*			$ \begin{array}{c cc} \times & h^* \\ \hline & & h_{Imcut} \\ \hline & & h_{ff} \\ \hline & & \pm 2\sigma (h_{FFrand}) \\ \hline & & \bar{h}_{FFrand} \end{array} $
300 -								
200 -						× × ×		

