

Steric influence at the 6,6'-positions in Mn(bpy) complexes and the resulting impact on electrochemical CO₂ reduction

Zane Thistleford, Rashi Gupta, Christine A. Caputo

ACS Philadelphia 2020 and UNH Graduate Research Conference 2020

Division of Energy and Fuels Electrochemistry-Enabled Catalysis for Energy, Chemicals & Materials

Catalytic CO₂ Reduction

- $CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$
- Catalyst should:
 - Deliver 2 protons and 2 electrons
 - Demonstrate long-term stability and high efficiency
 - Use earth-abundant metals if possible
- Mn(bpy)(CO)₃Br demonstrated lower overpotentials than Re(bpy)(CO)₃Br.

Factors Influencing Dimer Formation

Sampson, M.D.; Nguyen, A.D.; Grice, K.A.; Moore, C.E.; Rheingold, A.L.; Kubiak, C.P. *J. Am. Chem. Soc.*, **2014**, *136*, 5460-5471. McKinnon, M.; Belkina, V.; Ngo, K.T.; Ertem, M.Z.; Grills, D.C.; Rochford, J. *Front. Chem.* **2019**, *7:628*, 1-14. Tignor, S. E.; Kuo, H. Y.; Lee, T. S.; Scholes, G. D.; Bocarsly, A. B. *Organometallics* **2019**, *38* (6), 1292–1299.

$CV of Mn(6,6'-Me_2bpy)(CO)_3Br$

$CV of Mn(6,6'-Me_2bpy)(CO)_3Br$

CV in THF

Sampson, M.D.; Nguyen, A.D.; Grice, K.A.; Moore, C.E.; Rheingold, A.L.; Kubiak, C.P. J. Am. Chem. Soc., **2014**, 136, 5460-5471. Thistleford, Z.; Gupta, R.; Caputo, C. In Preparation.

6

Thistleford, Z.; Gupta, R.; Caputo, C. In Preparation.

8

Concentration-dependent dimerization

Dimer formation can be selectively observed in Mn(6,6'-Me₂bpy)(CO)₃Br by varying scan rate, solvent, and concentration.

Thistleford, Z.; Gupta, R.; Caputo, C. In Preparation.

Analogous Phenanthroline/Biquinoline

- 6,6'-dimethyl substitution decreased dimer behavior.
- Biquinoline's lack of dimer behavior is attributed to the stability of the acetonitrile-bound complex.

Biquinoline dimer formation

Thistleford, Z.; Gupta, R.; Caputo, C. In Preparation.

alla a

Making Predictions based on Trends

- Comparing our complexes against Bocarsly's 4,4'-substituted complexes.
 - HOMO-LUMO gap
 - MLCT λ_{max}
 - Reduction potential to generate anion, 100mV/s

Tignor, S. E.; Kuo, H. Y.; Lee, T. S.; Scholes, G. D.; Bocarsly, A. B. *Organometallics* **2019**, *38* (6), 1292–1299.

Thistleford, Z.; Gupta, R.; Caputo, C. In Preparation.

Bpz

Вру

Bpm

Biquin

MLCT λ_{max} vs HOMO-LUMO gap

MLCT vs HOMO-LUMO gap: e-donating

- Substitution at the 6- and 6,6'-positions has a much greater impact on both the ulletHOMO-LUMO gap (mostly by raising the LUMO) as well as wavelength.
- For PyQuin and Biquin, delocalization/e-withdrawing is still more significant. •

Tignor, S. E.; Kuo, H. Y.; Lee, T. S.; Scholes, G. D.; Bocarsly, A. B. Organometallics 2019, 38 (6), 1292–1299. Thistleford, Z.; Gupta, R.; Caputo, C. In Preparation.

Reduction Potentials vs HOMO-LUMO gap

- Electron-withdrawing substituents have less negative reduction potentials.
- Mono-substituted complexes have less negative 1st reduction potential than expected.

14

Asymmetry leads to 2 anion-formation peaks

Thistleford, Z.; Gupta, R.; Caputo, C. In Preparation.

Mn(bpy)(CO)₃Br Catalysis

15

Summary of Catalysis

	Complex	Concentration	Potential vs.	Product	1hr TON	1hr FE%	4hr TON	4hr FE%
			Fc/Fc+					
	Mn(6-Mebpy)(CO) ₃ Br	1.0mM	-2.1V	СО	0.5	71%	0.9	60%
	Mn(6-Mebpy)(CO) ₃ Br	1.0mM	-2.1V	H ₂	0.1	19%	0.4	26%
N	۱n(6,6'-Me ₂ bpy)(CO) ₃ (OTf)	1.1mM	-2.1V	СО	1.2	59%	3.4	60%
N	In(6,6'-Me ₂ bpy)(CO) ₃ (OTf)	1.1mM	-2.1V	H ₂	0.5	23%	1.6	29%
N	۱n(6,6'-Me ₂ bpy)(CO) ₃ (OTf)	1.1mM	-1.7V	СО	0.3	56%	1.0	54%
	Mn(Pyquin)(CO) ₃ (OTf)	0.9mM	-2.1V	CO	0.2	15%	0.5	9%
	Mn(Pyquin)(CO) ₃ (OTf)	0.9mM	-2.1V	H ₂	0.5	39%	2.3	43%
	Mn(Biquin)(CO) ₃ Br	1.0mM	-1.7V	СО	0.5	80%	1.4	71%
			>	N Br				

Pyquin

CO

Thistleford, Z.; Gupta, R.; Caputo, C. In Preparation.

6,6'-Me₂bpy

CO

6-Mebpy

CO

Biquin

CO

Grills, D.C.; Ertam, M.Z.; McKinnon, M.; Ngo, K.T.; Rochford, J. *Coord. Chem. Rev.* **2018**, *374*, 173-217. Reulliard, B.; Li, K.H.; Rosser, T. E.; Kuehnel, M.F.; Zebger, I.; Reisner, E. *J. Am. Chem. Soc.* **2017**, *139*, 14425-14435.

Selectivity

Br

₿r Ì

Ċ

Br

MeO

17

Future Directions

- Adding a pendant proton-transfer group to improve catalysis.
- "bipyridine-aniline" shows similar activity for protonationfirst catalysis, but improved reduction-first catalysis.

Complex	Concentration	Potential vs. Fc/Fc⁺	Product	1hr TON	1hr FE%	3hr TON	3hr FE%
Mn(bpy-an)(CO) ₃ Br	1mM	-1.7V	СО	0.3	73%	0.5	31%
Mn(bpy-an)(CO) ₃ Br	1mM	-2.1V	СО	2.1	85%	4.1	41%
Mn(bpy-an)(CO) ₃ Br	1mM	-2.1V	H ₂	0.4	17%	6.6	66%

Acknowledgments

- Caputo Group
 - Dr. Christine Caputo
 - Rashi Gupta

Dr. Jonathan Rochford at UMass Boston

UNH CEPS Fellowship

Energy Computations (values in kcal/mol)

Ligand	H ₃ CCN-bound (kcal/mol vs. Dimer)	Monomer (kcal/mol vs. Dimer)
6,6'-dimethylbipyridine	-0.1	3.6
6-methylbipyridine (anti)	1.0	6.3
6-methylbipyridine (syn)	0.9	6.2
Pyridyl-quinoline (anti)	-3.0	5.6
Pyridyl-quinoline (syn)	-3.0	5.6
Pyridyl-isoquinoline (anti)	3.2	9.1
Pyridyl-isoquinoline (syn)	2.9	8.8
Quinoline-isoquinoline (anti)	-2.0	5.7
Quinoline-isoquinoline (syn)	-2.0	5.6
Biisoquinoline	5.7	11.8

Ligand	H ₃ CCN-bound	Monomer	Reference	
	(kcal/mol vs. Dimer)	(kcal/mol vs. Dimer)		
bipyridine	3.3	11.3	Bocarsly	
4,4'-dimethylbipyridine	1.7	8.9	Bocarsly	
4,4'-diethylbipyridine	2.8	9.2	Bocarsly	
4,4'-t-butylbipyridine	3.3	9.0	Bocarsly	
4,4',5,5'-tetramethylbipyridine	3.7	9.1	Bocarsly	
4,4'-dimethoxybipyridine	2.5	9.3	Bocarsly	
4,4'-dicarboxylbipyridine	-10.6	8.8	Bocarsly	
4,4'-diphenylbipyridine	0.9	9.4	Bocarsly	
4,4'-dibenzylbipyridine	4.5	10.3	Bocarsly	
2,2'-bipyramidine	-1.2	23.0	Bocarsly	
2,2'-bipyrizine	3.7	16.5	Bocarsly	
Biquinoline	-7.6	0.8	Rochford	
phenanthroline	3.1	8.9	Rochford	
6,6'-dimethylphenanthroline	0.0	1.3	Rochford	
6,6'-mesbpy	-8.0	-1.9	Sampson	

Sampson, M.D.; Nguyen, A.D.; Grice, K.A.; Moore, C.E.; Rheingold, A.L.; Kubiak, C.P. *J. Am. Chem. Soc.*, **2014**, *136*, 5460-5471. McKinnon, M.; Belkina, V.; Ngo, K.T.; Ertem, M.Z.; Grills, D.C.; Rochford, J. *Front. Chem.* **2019**, *7:628*, 1-14. Tignor, S. E.; Kuo, H. Y.; Lee, T. S.; Scholes, G. D.; Bocarsly, A. B. *Organometallics* **2019**, *38* (6), 1292–1299. Bourrez, M.; Molton, F.; Chardon-Noblat, S.; Deronzier, A. Angew. Chem. Int. Ed. **2011**, *50*, 9903-9906.