Solving Multi-Model MDPs by Coordinate Ascent and Dynamic Programming

Xihong Su ${ }^{1}$, Marek Petrik ${ }^{1}$

${ }^{1}$ University of New Hampshire

Summary

- Compute policies that are robust to parameter uncertainty is very important in many domains, like health care, inventory control or finance.
- Seek policies that maximize the expected return over a distribution of MDP models
- Mixed integer linear program formulation: hard to scale to large problems.
- Dynamic programming algorithms for MMDPs: lack local/global optimal guarantees.
- New algorithms for maximizing mean return of MMDPs
- Derive the gradient of the return of MMDPs with respect to the set of randomized policies
- Guarantee monotone policy improvements to a local maximum

Markov Decision Process (MDP)

Multi-model Markov Decision Processes (MMDPs)

$\mathcal{M}=\{1,2\}, \lambda=\left\{\lambda_{1}, \lambda_{2}\right\}, \mathcal{S}=\{$ mild, moderate, severe $\}, \mathcal{A}=\{A, B\}$

- Mean return across the uncertain true models

$$
\begin{equation*}
\rho(\pi)=\mathbb{E}^{\lambda}\left[\mathbb { E } ^ { \pi , \rho ^ { \tilde { m } } , \mu } \left[\sum_{t=1}^{T} r_{t}^{\left.\left.\tilde{m}\left(\tilde{s}_{t}, \tilde{a}_{t}\right) \mid \tilde{m}\right]\right]}\right.\right. \tag{1}
\end{equation*}
$$

- Optimal policy ρ^{*}
$\rho^{*}=\max _{\pi \in \Pi} \rho(\pi)$

Prior Work: Weight-Select-Update (WSU)
WSU Approximation Algorithm
Input: MMDPs, Model weights
Output: $\pi=\left(\pi_{1}, \ldots, \pi_{T}\right)$

1. Initialize $v^{\pi}+1, m\left(s_{T+1}\right)=0, \forall m \in \mathcal{M}$
2. For $t=T, T-1, \ldots, 1$ do
$\pi_{t}\left(s_{t}\right) \in \arg \max _{a \in \mathcal{A}} \sum_{m \in \mathcal{M}} \lambda_{m} \cdot q_{t, m}^{\pi}\left(s_{t}, a\right), \quad \forall s_{t} \in \mathcal{S}$
$v_{t, m}^{\pi}\left(s_{t}\right)=r_{t}^{m}\left(s_{t}, \pi\left(s_{t}\right)\right)+\sum_{s_{t+1} \in \mathcal{S}} p_{t}^{m}\left(s_{t+1} \mid s_{t}, \pi\left(s_{t}\right)\right) \cdot v_{t+1, m}^{\pi}\left(s_{t}+1\right), \forall m \in \mathcal{M}$
3. end for

MMDP Policy Gradient

- Main idea: Take a coordinate ascent perspective to adjust model weights iteratively.
- Definition 4.1 An adjustable weight for each $m \in \mathcal{M}, \pi \in \Pi, t \in \mathcal{T}$, and $s \in \mathcal{S}$ is

$$
b_{t, m}^{\pi}(s)=\mathbb{P}\left[\tilde{m}=m, \tilde{s_{t}}=s\right],
$$

where $S_{0} \sim \mu, \tilde{m} \sim \lambda$, and $\tilde{s}_{1}, \ldots, \tilde{s}_{T}$ are distributed according to $p^{\tilde{m}}$ of policy π

- Theorem 4.1: Gradient of ρ in Eq. (1) for each $t \in \mathcal{T}, \hat{s} \in \mathcal{S}, \hat{a} \in \mathcal{A}$, and $\pi \in \Pi_{R}$ is

$$
\frac{\partial \rho(\pi)}{\partial \pi_{t}(\hat{s}, \hat{a})}=\sum_{m \in \mathcal{M}} b_{t, m}^{\pi}(\hat{s}) \cdot q_{t, m}^{\pi}(\hat{s}, \hat{a}),
$$

where q is state-action value function and b is an adjustable weight

- Corollary 4.2 For any $\bar{\pi} \in \Pi$ and $t \in \mathcal{T}$, function $\pi_{t} \mapsto \rho\left(\bar{\pi}_{1}, \ldots, \pi_{t}, \ldots, \bar{\pi}_{T}\right)$ is linear.
- Linearity implies that we can solve the maximization over $\pi_{t}(s)$ as

$$
\pi_{t}^{n}(s) \in \underset{a \in \mathcal{A}}{\arg \max } \sum_{m \in \mathcal{M}} b_{t, m}^{\pi_{t, m}^{n-1}}(s) \cdot q_{t, m}^{\pi^{n}}(s, a) .
$$

Coordinate Ascent Dynamic Programming (CADP)

- Main idea: Combine coordinate ascent method and DP to solve MMDPs.
- Corresponds to: Replace the fixed model weights λ_{m} in WSU by adjustable weights
- Blue dotted rectangle is to compute an initial policy (for example by WSU, MVP)

Related Algorithms

Prior MMDP algorithms: WSU and MVP

- Gradient-based MMDP methods: Mirror and Gradient
- Thompson sampling-based algorithms: MixTS

POMDP formulations: QMDP and POMCP

Simulation Results: Pest Control

- Time horizon $T=50$, Domain: Pest control simulation
- Below figure: mean returns of CADP with different initial policies.

- Left figure: mean returns of algorithms, and right figure: runtimes of algorithms
- Marker X: no single policy available or runtime is greater than 900 minutes

Simulation Results: Other Domains

- Mean returns $\rho(\pi)$ on the test set of policies π computed by each algorithm

Algorithm	RS		POP		POPS		INV		HIV	
	$\mathrm{T}=50$	$\mathrm{T}=150$	$\mathrm{T}=50$	T =150	$\mathrm{T}=50$	T=150	$\mathrm{T}=50$	T =150	T = 5	$\mathrm{T}=20$
CADP	204	207	-361	-368	-1067	-1082	323	350	33348	42566
WSU	203	206	-542	-551	-1915	-1932	323	349	33348	42564
MVP	201	204	-704	-717	-2147	-2179	323	350	33348	42564
Mirror	181	183	-1650	-1600	-3676	-3800	314	345	33348	42566
Gradient	203	206	-542	-551	-1915	-1932	323	349	33348	42564
MixTS	167	176	-1761	-1711	-2857	-3016	327	350	293	-1026
QMDP	190	183	-	-	-				30705	39626
POMCP	58	64	-	-	-	-	-		25794	30910
Oracle	210	213	-168	-172	-882	-894	332	360	40159	53856

