
Solving Multi-Model MDPs by Coordinate Ascent and Dynamic
Programming

,

Xihong Su1, Marek Petrik1

1University of New Hampshire

Summary
Motivation

▶ Compute policies that are robust to parameter uncertainty is very important in many
domains, like health care, inventory control or finance.

▶ Seek policies that maximize the expected return over a distribution of MDP models

Limitations of existing methods

▶ Mixed integer linear program formulation: hard to scale to large problems.

▶ Dynamic programming algorithms for MMDPs: lack local/global optimal guarantees.

Our contributions

▶ New algorithms for maximizing mean return of MMDPs

▶ Derive the gradient of the return of MMDPs with respect to the set of randomized policies

▶ Guarantee monotone policy improvements to a local maximum

Markov Decision Process (MDP)

Multi-model Markov Decision Processes (MMDPs)

▶ Mean return across the uncertain true models

ρ(π) = Eλ

[
Eπ,pm̃,µ

[
T∑
t=1

r m̃t (s̃t, ãt) | m̃
]]

(1).

▶ Optimal policy ρ∗

ρ∗ = max
π∈Π

ρ(π).

Prior Work: Weight-Select-Update (WSU)

WSU Approximation Algorithm

Input: MMDPs, Model weights λ
Output: π = (π1, . . . , πT )

1. Initialize vπT+1,m(sT+1) = 0,∀m ∈M
2. For t = T ,T − 1, . . . , 1 do

3. πt(st) ∈ arg maxa∈A
∑

m∈M λm · qπt,m(st, a), ∀st ∈ S.

4. vπt,m(st) = rmt (st, π(st)) +
∑

st+1∈S p
m
t (st+1 | st, π(st)) · vπt+1,m(st + 1),∀m ∈M .

5. end for

MMDP Policy Gradient
▶ Main idea: Take a coordinate ascent perspective to adjust model weights iteratively.

▶ Definition 4.1 An adjustable weight for each m ∈M, π ∈ Π, t ∈ T , and s ∈ S is

bπt,m(s) = P[m̃ = m, s̃t = s],

where S0 ∼ µ, m̃ ∼ λ, and s̃1, . . . , s̃T are distributed according to pm̃ of policy π.

▶ Theorem 4.1: Gradient of ρ in Eq. (1) for each t ∈ T , ŝ ∈ S, â ∈ A, and π ∈ ΠR is

∂ρ(π)

∂πt(ŝ, â)
=

∑
m∈M

bπt,m(ŝ) · qπt,m(ŝ, â) ,

where q is state-action value function and b is an adjustable weight

▶ Corollary 4.2 For any π̄ ∈ Π and t ∈ T , function πt 7→ ρ(π̄1, . . . , πt, . . . , π̄T ) is linear.

▶ Linearity implies that we can solve the maximization over πt(s) as

πn
t (s) ∈ arg max

a∈A

∑
m∈M

bπ
n−1

t,m (s) · qπn

t,m(s, a).

Coordinate Ascent Dynamic Programming (CADP)

▶ Main idea: Combine coordinate ascent method and DP to solve MMDPs.

▶ Corresponds to: Replace the fixed model weights λm in WSU by adjustable weights bπt,m

▶ Blue dotted rectangle is to compute an initial policy (for example by WSU, MVP)

Start
MMDP,λ,
n = 0

Compute
a policy

πn

Adjust
model
weight
bπ

n

Compute a
policy πn+1

ρ(πn+1) =
ρ(πn)?

n ← n+1, πnPolicy πn+1Stop
yes no

Related Algorithms
▶ Prior MMDP algorithms: WSU and MVP

▶ Gradient-based MMDP methods: Mirror and Gradient

▶ Thompson sampling-based algorithms: MixTS

▶ POMDP formulations: QMDP and POMCP

Simulation Results: Pest Control
▶ Time horizon T = 50, Domain: Pest control simulation

▶ Below figure: mean returns of CADP with different initial policies.

π0 π1 π2 π3 π4

Iteration

−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

M
ea

n 
re

tu
rn

π0=WSU
π0=MVP
π0=Randomized

▶ Left figure: mean returns of algorithms, and right figure: runtimes of algorithms.

▶ Marker X: no single policy available or runtime is greater than 900 minutes

−3500 −3000 −2500 −2000 −1500 −1000 −500 0
Mean Return

POMCP
QMDP
MixTS
Mirror
Gradient
MVP
WSU
Oracle
CADP

Al
go

rit
hm

0 1 2 3 4 5
Runtime(minute)

POMCP
QMDP
MixTS
Mirror

Gradient
MVP
WSU

Oracle
CADP

Al
go

rit
hm

Simulation Results: Other Domains
▶ Mean returns ρ(π) on the test set of policies π computed by each algorithm

Algorithm RS POP POPS INV HIV
T = 50 T =150 T = 50 T =150 T = 50 T =150 T = 50 T =150 T = 5 T =20

CADP 204 207 -361 -368 -1067 -1082 323 350 33348 42566
WSU 203 206 -542 -551 -1915 -1932 323 349 33348 42564
MVP 201 204 -704 -717 -2147 -2179 323 350 33348 42564

Mirror 181 183 -1650 -1600 -3676 -3800 314 345 33348 42566
Gradient 203 206 -542 -551 -1915 -1932 323 349 33348 42564

MixTS 167 176 -1761 -1711 -2857 -3016 327 350 293 -1026
QMDP 190 183 - - - - - - 30705 39626
POMCP 58 64 - - - - - - 25794 30910

Oracle 210 213 -168 -172 -882 -894 332 360 40159 53856


