

Thor's Hammer - Rowhammer Attack Nicholas Quinlan, Nicholas Green, Cameron Gavin, and Dr. Dean Sullivan Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824

Introduction

The purpose of this project is to demonstrate a rowhammer attack using a field programmable gate array (FPGA) interfaced with dynamic random-access memory (DRAM).

A rowhammer attack takes advantage of a vulnerability that is present in Double Data Rate (DDR) chips. By rapidly activating a physical memory row it is possible to cause **data corruption**.

Methodology

- An FPGA was used because it creates an interface that provides precise control over the DRAM being tested.
- The **Zybo Z7 FPGA** has a processor which includes a central processing unit (CPU), and CPUs have memory controllers, which is a necessary component for this system.
- The Zybo has a 1 GB DDR3L with 32-bit bus @ 1066 MHz chip, which was used as the victim DDR module.

Attacks with Variable Activity

The Vulnerability in Double Data Rate Memory

Attack Code Overview

Rowhammer Attack with Variable Temperature

DDR Map - No Heat

1000101010101010010100010101010101

	hammer_func(addr, words, pattern) {
	<pre>// initialize memory pattern to check later</pre>
	for each bank in DRAM
	for each column of the bank
	set bank, col = pattern
-	end for
•	end for
	<pre>// perform rowhammer attack and report bit flips</pre>
	for each bank in DRAM
	for HAMMER_ATTEMPTS
	activate row at victim_row – 1
-	activate row at victim_row + 1
_	end for
	for each column of the bank
	values = words at bank, col
	if read values do not equal initialized pattern
	/* bitflip has been found */
	end if
	end for
	end for
	}

DDR Map - Heated

2023, from

Baidu Security X-Lab. (2019, April 25). PC security facing another "heavy hammer", Baidu Security discovers a new rowhammer attack. Retrieved April 14, 2023, from https://medium.com/baiduxlab/pc-security-facing-another-heavy-hammer-baidu-security-disco vers-a-new-rowhammer-attack-be3dce8d1e92

Bobrowicz, Sam. "Zybo Z7." Zybo Z7 - Digilent Reference, https://digilent.com/reference/programmable-logic/zybo-z7/start.

Heat Test Series Results

Conclusions

• DRAM is more vulnerable as the temperature increases, which can be caused by both malicious actors and normal operation.

• More activity on a row increases the chance of inducing bit flips.

• The circuit-level failure of modern DRAM memory compromises system security by breaking memory isolation.

• Although this vulnerability was discovered nearly a decade ago, this is still a relevant security threat, and can be paired with other stimuli to become even more effective and dangerous.

Acknowledgements

The Resilient Architectures Laboratory supplied the necessary equipment to create this project.

References

Micron. (n.d.). Digi-key. 4Gb: x4, x8, x16 DDR3L SDRAM Description. Retrieved April 14,

https://media.digikey.com/pdf/Data%20Sheets/Micron%20Technology%20Inc%20PDFs/MT4 1K256M16 MT41K1G4 MT41K512M8 DS.pdf