

INTRODUCTION

- Dairy practices account for about 1.9-2.2% of total greenhouse gas emissions and 24.8% of enteric CH₄ production in the US.
- The global warming potential of CH_4 is ~32 times that of CO_2 , and CH_4 production also represents 2-12% energetic losses.
- There has been considerable interest in reducing CH_4 emission of dairy cattle.
- Addition of fermentable energy (e.g., starch) or rumenprotected (RP)-Met, Lys, and His to low-CP diets have been shown to improve milk and milk protein yield, while sustaining N efficiency of lactating cows.
- However, the effects of these dietary strategies (dietary) starch level and RP-AA supplementation) on CH₄ emission and energy utilization have not been investigated.

OBJECTIVE

We aimed to explore the impact of dietary starch level and RP-Met, Lys, and His on CH₄ production and whole-body energy utilization in lactating dairy cows fed MP-deficient diets.

METHODS

- Sixteen multiparous Holstein cows (138 ± 46 DIM, 46 ± 6) kg/d of milk, and 700 \pm 55 kg of BW) were used in a replicated 4×4 Latin square design with a 2×2 factorial arrangement of treatments.
- Each period lasted 21 d, including 14 d for diet adaptation and 7 d for data and sample collection.
- Dietary treatments included high-starch (HS), high-starch + RP-Met, Lys, and His (**HS/MLH**), reduced-starch (**RS**), and reduced-starch + RP-Met, Lys, and His (**RS/MLH**).
- Both diets consisted of 50% forage and 50% concentrate (Table 1).
- Dietary starch level varied by replacing 30% ground corn with 10% soybean hulls and 20% beet pulp (Table 1).
- Emissions of CO_2 and CH_4 were measured by the GreenFeed system (C-Lock Inc., Rapid City, SD) twice daily from d 15 to 18.
- Fecal, urinary, CH_{4} , milk, and tissue energy and heat production were calculated using equations.
- Data were analyzed using the MIXED procedure of SAS (SAS version 9.4).

Dietary Starch Level and Rumen-protected AA: Effects on CH₄ Emissions and Heat Production in Lactating Dairy Cows

Y. Zang¹*, L. H. P. Silva¹, Y. C. Geng², M. Ghelichkhan¹, N. L. Whitehouse¹, M. Miura³, and A. F. Brito¹ ¹University of New Hampshire, Durham, NH; ²Chinese Academy of Agricultural Sciences, Beijing, China; ³Ajinomoto Co., Inc., Kawasaki-shi, Japan

> Table 1. Ingredient and nutrient composition of high-starch (HS) and reduced-starch (**RS**) diets

		Experimental Diets			Experimental Diets	
	Ingredient, % of DM	HS	RS	Nutrient composition	HS	RS
	Corn silage	35.7	35.7	DM (%)	46.8	46.8
	Haylage	14.7	14.7	CP	16.0	16.4
	Ground corn	30.0	-	aNDF	27.9	38.6
•	Beet pulp	-	20.0	Forage NDF	23.4	23.4
	Soybean hulls	-	10.0	ADF	16.4	24.6
	Soybean meal	8.71	8.71	NFC	47.0	35.2
	Canola meal	2.76	2.76	Starch	34.4	12.3
	BergaFat F100	3.00	3.00	Ether extract	6.40	5.70
	Mineral mix	2.50	2.50	NE _L , Mcal/kg DM	1.68	1.59
	Sodium bicarbonate	1.00	1.00	Ca	0.60	1.00
	DDGS	0.92	0.92	Р	0.40	0.40
	Urea	0.70	0.70			

Table 2. NRC (2001) estimated NE₁, MP and AA balance of lactating dairy cows fed high-starch diet without (HS) and with RP-MLH (HS/MLH), and reduced-starch diet without (**RS**) and with RP-MLH (**RS/MLH**)

Item	HS	HS/MLH	RS	RS/MLH
NE _L , Mcal/d				
Requirement	40.0	40.0	40.0	40.0
Supply	41.4	41.5	40.1	40.4
Balance	1.3	1.4	0.1	0.4
MP, g/d				
Requirement	2743	2747	2773	2780
Supply	2564	2612	2666	2727
Balance	-180	-135	-107	-53
RDP, g/d				
Requirement	2539	2548	2479	2497
Supply	2623	2633	2615	2634
Balance	84	85	136	137
RUP, g/d				
Requirement	1544	1541	1675	1669
Supply	1321	1366	1537	1590
Balance	-223	-175	-137	-79
dHis, g/d				
Requirement	60	60	61	61
Supply from the diet	55	55	58	59
Supply from RP-His	0	7	0	7
Balance	-5	2	-3	5
dMet, g/d				
Requirement	60	60	61	61
Supply from the diet	48	48	49	49
Supply from RP-Met	0	15	0	15
Balance	-12	3	-12	3
dLys, g/d				
Requirement	181	181	183	181
Supply	172	173	177	178
Supply from RP-Lys	0	16	0	16
Balance	-9	8	-7	13

Table 3. Dietary energy estimations and milk energy efficiencies in lactating dairy cows fed high-starch diet without (HS) and with RP-MLH (HS/MLH), and reduced-starch diet without (RS) and with RP-MLH (RS/MLH)

	Treatments				_	<i>P</i> -value		
Item	HS	HS/MLH	RS	RS/MLH	SEM	\mathbf{SL}^1	MLH^1	$SL \times MLH$
GE ² , Mcal/d	103	104	103	105	2.93	0.97	0.34	0.66
DE ³ , Mcal/d	72.2	72.8	72.1	73.3	1.81	0.87	0.46	0.80
ME ⁴ , Mcal/d	62.4	63.0	61.1	62.1	1.51	0.28	0.43	0.81
Fecal energy ⁵ , Mcal/d	31.1	31.5	30.5	32.1	1.19	0.94	0.29	0.53
Urinary energy ⁶ , Mcal/d	4.06	4.10	3.97	4.04	0.10	0.27	0.44	0.81
CH ₄ energy ⁷ , Mcal/d	6.13	6.13	7.71	7.70	0.30	< 0.001	0.97	0.99
Heat production ⁸ , Mcal/d	34.2	33.8	33.6	34.1	0.94	0.80	1.00	0.47
Milk energy ⁹ , Mcal/d	27.8	28.2	27.3	27.2	0.80	0.08	0.80	0.59
Tissue energy ¹⁰ , Mcal/d	0.34	0.99	0.16	0.93	0.40	0.76	0.07	0.88
Milk energy, % of GE	27.2	27.2	26.8	26.0	0.55	0.03	0.32	0.26
Milk energy, % of DE	38.6	38.8	38.0	37.2	0.77	0.02	0.53	0.25

 ${}^{1}SL = starch level, MLH = RP-Met, Lys, and His. {}^{2}GE = DE + fecal energy. {}^{3}DE = ME + CH_{4} energy + urinary energy. {}^{4}ME = Heat$ production + milk energy + tissue energy. ⁵Fecal energy = (DE \div in situ DM digestibility) – DE. ⁶Urinary energy = ME \times 0.065. ⁷CH₄ energy = CH4 \times 13.2 kcal/g. ⁸Heat production = (4.96 + 16.07 ÷ respiratory quotient) \times QCO2 (L/d) ÷ 1,000, RQ = 1.00. ⁹Milk energy = $[(0.0929 \times \text{milk fat}) + (0.0563 \times \text{milk true protein}) + (0.0395 \times \text{milk lactose})] \times \text{milk yield (kg/d)}$. ¹⁰Tissue energy = (body fat% \times 9.4 + body protein% \times 5.55) \times BW change.

Figure 1. The GreenFeed system operates by automatically releasing a bait feed set to ~15 times per feeding event with 20 s apart triggered by a radio frequency ear tag after the cow's head is located inside the head chamber resulting n representative breath or eructation sampling and near real-time analysis of CH₄ and CO₂ emissions using built-in gas sensors

Figure 2. Enteric CH₄ production (**2A**), yield (**2B**), and intensity (**2C** and **2D**), CO_2 emission (**2E**), and CH_4 to CO_2 ratio (**2F**) in lactating dairy cows fed high-starch diet without (**HS**) and with RP-MLH (HS/MLH), and reduced-starch diet without (RS) and with RP-MLH (**RS/MLH**); SL represents dietary starch level.

Gross Energy (GE) → Fecal Energy Digestible Energy (DE) Urinary Energy

& Gaseous Energy Metabolizable Energy (ME) Heat Production Net Energy (NE)

Figure 3. Energy flow diagram in dairy cows

- Daily CH₄ production (434 vs. 545 g/d; 605 vs. 760 L/d), yield (17.7 vs. 21.6 g/kg of DMI), and intensity (11.0 vs. 14.6 g/kg of milk yield; 10.7 vs. 13.6 g/kg of ECM) were lower with feeding HS vs. RS diets, respectively (*P* < 0.001; Figure 2A-D).
- CO₂ emission (mean = 12.0 kg/d or 6,043 L/d) did not differ significantly across diets (Figure 2E).
- 2F).
- Treatments did not affect fecal and urinary energy (Table 3).
- Cows fed HS diets had reduced CH_{4} energy than those fed RS diets (5.72 vs. 7.19 Mcal/d; Table 3).
- Heat production (mean = 33.9 Mcal/d) was not affected by treatments (Table 3).
- Milk energy tended to be higher with HS diets as compared with RS diets (P = 0.08; Table 3).
- Milk energy efficiencies (% of GE and % of DE) were elevated for HS diets, relative to RS diets (Table 3).
- No effect of RP-MLH supplementation on energy utilization was observed (Table 3).

- Ajinomoto Co., Inc., Kawasaki-shi, Japan Farm crew at the Fairchild Dairy Teaching and Research Center
- NH Agricultural Experiment Station and USDA-NIFA Multistate Hatch
- Broderick et al., 2003. J. Dairy Sci. 86:1370-1381 Broderick et al. 2009. J. Dairy Sci. 92:2719-2728

- 3. Chase, 2014. Cornell Nutrition Conference Proceedings 4. Giallongo et al. 2016. J. Dairy Sci. 99:4437-4452 5. Lee et al. 2011. J. Dairy Sci. 94:5544-5557 6. Lee et al. 2012. J. Dairy Sci. 95:6042-6056 7. Rius et al. 2010. J. Dairy Sci. 93:2034-2043

RESULTS

HS diets had decreased CH_4 to CO_2 ratio than RS diets (Figure

CONCLUSIONS

- Elevated starch supply by substituting fibrous byproducts with ground corn decreased energy losses as CH_4 without changing HP.
- Feeding high-starch diets improved milk energy utilization of lactating dairy cows.

ACKNOWLEDGMENTS

REFERENCES