
Presenter: Owen Hilyard
Advisor: Aleksey Charapko
Program: Computer Science

METRONOME: A Kernel Bypass Distributed Database

Introduction
In distributed storage systems today, the ingestion
and ordering of data is often coupled and use of
consensus algorithms is a typical way to provide a
total-order (i.e., a single history of changes) which is
a limiting factor in how much data the system can
process. To achieve higher throughput, they must be
separated.

Goals
▶ Separate consensus and data
▶ High throughput with consistent (not necessarily

low) latency
▶ Keep the storage servers lean and fast
▶ Provide a comparison point for Ethernet vs

RDMA for databases
▶ Re-use of existing consensus algorithms

Requirements
▶ Compatibility with public cloud environments

(AWS, GCP, Azure)
▶ Focus on widely-available NIC features while

leveraging DPDK.
▶ Ease of deployment of the distributed system.
▶ Separation of concerns between security, business

and storage requirements to facilitate optimal
performance.

Non-Goals
▶ Low throughput efficiency (≤ 30k requests per

second)
▶ Low latency (nanosecond timescale)
▶ Non-Linux OS support
▶ Local developer environment deployments

▶ A multi-vendor kernel-bypass framework for high
performance packet processing owned by the
Linux Foundation

▶ Takes control of NICs away from the kernel to
enable network IO with no syscalls.

▶ Capable of forwarding IPv4 traffic at 123,220,000
packets per second per core (DPDK 22.11 Intel
NIC Performance Report)

▶ Extensive support for hardware offloads, such as
the entirety of TLS 1.2.

▶ The UNH InterOperability Lab hosts the CI
infrastructure for DPDK as well as providing
support for testing. I was the team lead for that
project and a DPDK maintainer.

Metronome Cluster Data Ingest

Clients (Untrusted)

Trusted

Proxies

Storage Servers (Quorum)

Client N

Dynamic Session-Aware Load Balancing

...Client 2Client 1

Proxy N...Proxy 2Proxy 1

Multicast over Redundant Network

Storage Server N...Storage Server 2Storage Server 1

Storage Server
Step 0: Network Ingress

Step 4: Apply
Operations

to State Machine

Nic Port P

Step 1: Distribute by 4t Hash (HW or SW RSS)

...Nic Port 2Nic Port 1

Ordering Core C...Ordering Core 2Ordering Core 1

Step 3: Distribute by Pre-Computed Key Hash

Step 2: Convert to Reliable and Ordered
Message Stream

State Machine Partition N...State Machine Partition 2State Machine Partition 1

Step 5: Nic Transmit

Global Ordering Layer

Test Environment (Provided by UNH IOL)
▶ 2x Gigabyte R270-T60
▶ Ubuntu 20.04.5 LTS
▶ 4x Cavium THUNDERX Network Interface @ 10G

▶ 2 x Cavium ThunderX ARM CPUs per server @ 2.0GHz
(2014 Launch)

▶ 251 GiB Micron 2100 MT/s DDR4 per server

Testing Methodology
▶ Client uses 1 core as a workload generator.
▶ Server uses 1 core to accept packets, order per-burst, apply operation to

hash table and transmit.
▶ Both client and server use a 10G interface on the local NUMA node.
▶ Both client and server are provided 50GiB of contiguous pinned 1GiB pages.
▶ Both client and server cores are removed from the kernel scheduler.
▶ Rate was captured by waiting 30 seconds for warmup and capturing the

total number of requests handled in the next 60 seconds.
▶ 10 trials per server implementation.
▶ The DPDK server implementation has a granularity of 10,000 requests per

second per trial as more precise measurements resulted in decreased
performance.

Testing Scenarios/Results
▶ DPDK: Uses DPDK for networking, takes advantage of pre-calculated hash

optimizations in the DPDK hash table.
▶ socket reorder: Uses kernel sockets and performs the same work as the

DPDK implementation.
▶ socket simple: Use kernel sockets and treats UDP like a reliable ordered

protocol.

Completed Work
▶ Data ingest pipeline achieves an 11x performance improvement over sockets.
▶ Custom Ethernet/IPv4/UDP stack
▶ Implemented custom messaging protocol to minimize serialization and

copying of data.
▶ Guaranteed message ordering
▶ Infrastructure as code deployments with patched from-source kernel builds

for AWS deployments


