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the u’' equation is linear w.r.t the mean.
Linear stability analysis reveals two distinct
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with non-zero phase speed. Interaction between
these two linearly unstable modes informs the
fully nonlinear dynamics observed via DNS.

At A Glance
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=0 (QL) = Local maxima in the DNS horizontal KE spectrum, corresponding to local maxima in the
linear growth rate curve, indicate that the nonlinear dynamics are dominated by the
Regime Schematlzatlon Phenomenolo gy A1 interaction of features with two distinct horizontal length scales.
3] 3 3 3 = All computed GQL spectra reproduce the large-wavenumber peak, and therefore the
dominant small-scale features of the flow.
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P y q Eq '\ - = Analysis of DNS and GQL nonlinear transfer spectra in order to identify important
1 2 « A=0,14 16,32 - : ,.‘ // \ | energy pathways, explain GQL-DNS discrepancies more precisely, and propose an
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e e "= Ny=N,=512 “ 1077 NS ] = GQL simulations which contain a small number of dynamical active modes (possibly
F2 = 0.03+F corresponding to the spectral peaks), with the rest of the modes slaved to them.
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