Should We Transform Our Understanding of Linearity in
Generalized Linear Models?
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The problem with linearity

e Linear models, and by extension generalized
linear models (GLMs) are an incredibly widespread
and useful tool in wildlife ecology.

e Linear models inherently assume that the
relationship between a predictor and a response is
linear, which may not perfectly capture the
complex nature of ecological relationships.

e Generalized linear models (GLMs) expand the
applicability of linear models beyond just positive
continuous data using link funcitons.

e However link functions do not remove the
linearity assumption, the assumption shifts to the
link scale.

e While the effects of non-linearity are more
intuitive for simple linear regression, they become
less straigt-forward in GLMs.

DATA SIMULATION
Non-linearity in GLMs
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Songbird Occupancy Modeling

Effect Effect DIC  DIC
o o No. Obs. (linear) (logged) (linear) (logged)
Llnk fU“CthnS Gray Catbird 52 0178 0247 3127 3092
IDENTITY Nothern cardinal 17 1131 06259 1412 18565
y =B +P.*x Wood Thrush 11 048 0928 1302 1103
y =B +B *lbgb() PUERTNIRTANARY 15 124 15 13499 1087
o | House Sparrow 14 151 145 15058 120.21
LOGIT
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log(odds rat.loy.)) =B, + [51* X,
log(odds ratio ) = B, + B,*x,
LOG

log(y;) = B, + B,*x,
log(y,)) = B, + B,*x+B,*x?
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Putting it all together

e Based on preliminary results of literature review, testing
for linearity is not common practice.

* It is more common to fit a non-linear model than to test
for linearity.

Poisson Regression

log link function

How often are ecologists
thinking about linearity?

2 B *Relationships between covariates and link-scale
3 3 responses can be non-linear.
€ *Non-linearity can also vary by species within a

community.

eNon-linear and linear relationships can vary in direction
and magnitude within the same species.

*Log-linear transformation may not be sufficient to
address non-linearity.

eFuture best practices may include testing for linearity in
communities, species, populations, and individuals.
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Future Directions

e Expand literature review

e Add two more case studies to explore the
dynamics of linearity in Poisson regression and
generalized additive models (GAMs).

e How do species with non-linear effects affect
community-level models?
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