Improving Phylogenetic Input Data with Phylogenetic Focusing

Christopher J. Gonzalez and David C. Plachetzki

Department of Molecular, Cellular, Biomedical Science, University of New Hampshire, Durham, NH 03824

Conceptual Background

- Mass sequence data provides unmatched opportunity for studies on gene family evolution & phylogenetics.
- Not all sequence data is relevant for every analysis, and efficiency requires limits on the volume of data used.
- How to filter input sequences for phylogenetics is crucial.

Input Data Filtering Goals

- limit input data size for computational feasibility
- Exclude irrelevant sequences
- Include relevant sequences

Phylogenetic Approaches to Input Data Filtering

General Approach (simplified)

- Many variations; most filter input data via BLAST hit limits and/or manual curation.
- One alignment and phylogeny made from all filtered data.
- Often a good starting point, but BLAST hits can include irrelevant data, while hit limit may exclude relevant data.

PhyFocus Approach

- Filters input data by assessing each species' gene phylogeny; phylogenies thus dictate what input data is relevant or irrelevant.
- Per species approach reduces data volume while eliminating need for arbitrary BLAST hit limits or manual selection bias.
- Requires extensive species sequence data and some prior phylogenetic knowledge for query gene clade.

Approaches Example: Chemosensory Genes

Query Target Seqs (Homo & Danio):

- Taste 1 Receptors (T1Rs)
- Calcium Receptor (CasR)

BLAST Database:

 43 Deuterostome peptide datasets

Figure 1. General Approach ML phylogeny

 Only target clades identified Limited species diversity

Figure 2. PhyFocus ML phylogeny

- T1R, CasR, & V2R clades identified
- Greater species diversity, resolution on orphan clades

Additional PhyFocus Applications

Candidate Gene Identification

 candidates for hagfish chemosensory genes (left) can be targeted in RNAseq of sensory tissues (right)

Rigorous Homolog Identification

 Support annotation of mayfly Hox gene homologs via placement in ANTP-class gene phylogeny₁

Getting Started with PhyFocus

Required Dependencies

- BLAST+ AWK
- CD-HIT Python3
- MAFFT Perl

• IQTREE

HMMER

Required Files

- Query FASTA
- Query alignment FASTA
- Species' peptide FASTAs
- Query header names CSV

PhyFocus Access

At github.com/C-gonz

Example Specifications

- CPUs: 24
- RAM: 125GB
- Figure 2 runtime: 7-10 days

Acknowledgements

- We would like to thank UNH MCBS for supporting this work, and fellow MCBS lab members for their feedback.
- Additional thanks for guidance and technical support from the UNH Hubbard Center for Genome Studies.

Works Cited

1. Gonzalez, C. J., Hildebrandt, T. R., & O'Donnell, B. (2022). Characterizing Hox genes in mayflies (Ephemeroptera), with Hexagenia limbata as a new mayfly model. EvoDevo, 13(1), 1-17.