University of New Hampshire

Electronics

Electronic Speed Controller ESC)

- Uses pulse width modulation from Pixhawk to power motors
- One ESC powers two motors, one for each side of the rover
- Controls motors

Raspberry Pi

- Runs PSO code and communicates goal position to the rest of the rover
- The brains of the rover

Pixhawk Flight Controller with <u>Global Positioning System (GPS)</u>

- Enables us to collab with ASV and Quad X Swarm teams
- Tracks current and future locations of rovers
- Controls positioning and movement

XBee and Shield

- 2.2 GHz transmitter/receiver
- Allows for swarm data communication
- Communication device

Battery

- 10,000 mAh capacity LiPo pack
- Provides overall power to the rover

Acknowledgements for their assistance in this project: Jaiden Evarts, Debarpan Bhowmick, Kyle Sanders

Particle Swarm Optimization (PSO)

- Based on biological swarms such as birds or fish
- Equation emphasizes efficient movement and common goals
- Searches for optimal parameters (such as a maximum or minimum) of a specific target
- Swarm converges on optima gradually, allowing each iteration to improve accuracy
- Requires current velocity, local (personal) best location, and global best location from the search space

Mission Statement

Our goal is to design and test a swarm of autonomous robots acting as a proof of concept for a particle swarm optimization (PSO) algorithm. This algorithm will then be tested on a field where the swarm of rovers will locate and travel to the highest point of elevation.

Capabilities

- 1.5 hour run time
- Robust and impact resistant
- 45 degree incline climbing Water resistant
- Prototyping quadcopter landing pad
- Early interoperability to run with air, land, and sea rovers

E ROS

Software and Control

- and enable interoperability with air- and sea-based robots
- calculations

- position
- sensors
- interface with all the rovers within the swarm

Advisors: Professor May-Win Thein, Gregory Hatfield

Rover Design

<u>Chassis</u>

• 5052 welded sheet aluminum

<u>Drivetrain</u>

- 4WD, tank steering
- Driven by 4 DC motors

<u>Suspension</u>

• Modified, independent single A-arm RC car suspension

<u>"Unicorn Horn"</u>

- Isolated system for IMU to prevent EMF interference
- Collapsible square tubing and 3D printed mount for Pixhawk
- **IR Vision System:**
- Optimized field of view to reduce in-test crashing
- 3D printed, enabling rapid prototyping and repair

Suspension Overhaul

- Changed to springs with a higher spring rate
- Analyzed second order impulse response
- Tuned suspension geometry for quickest response with minimal overshoot and optimal ride height

0.09				
0.08		\sim		
0.07		\prod		
E 0.06		IL		
0.05	25	$\parallel \frown$		
0.04	·/			
0.03				
0.02				
0.01				Hole 1 Hole 3 Hole 5
0	0.2	0.4	0.6	0.8 1

• Designed axle guards to fix the problem of tall grass wrapping around and jamming the axles

• Changed to PixHawk Flight Controller from Arduinos to improve GPS accuracy • Migrated to Raspberry Pi 3b's, ROS, and Python for all control and PSO

• Communication between rovers facilitated over XBee using Python • PSO algorithm outputs direction vector to reach a desired destination • Pixhawk controller uses custom firmware file to move the rover to a set GPS

• Incorporates obstacle avoidance in parallel with PSO control output using IR

• Configured wireless access to rovers for setup and configuration through SSH • Developed centralized command station Graphical User Interface (GUI) to