

Introduction

- Loading a typical kayak, which can weigh up to 100 lbs, by yourself is a hassle that some people cannot physically do • Though it is inconvenient and difficult for younger, ablebodied individuals, it is still possible for them
- There are segments of the market who cannot physically load kayaks onto the top of a vehicle by themselves
- Goal: Design and fabricate a loading system that would assist kayakers with the loading and unloading of their kayaks

Current Market Solutions

Telos: Cost is about \$450. The side arms must be collected and placed in the trunk of the car by user.

Thule: Costs around \$800 which is far too expensive compared to other items in the same market.

- Current market solutions are cumbersome and expensive
- It was also concluded that a rear loading system is inefficient due to the length of the kayak at the back of the vehicle

Design Criteria

- Utilize side loading geometry
- Make the system easy to use and can reduce lift weight
- Have a way for easy loading and unloading
- Make the system universal to vehicles and kayak support systems such as current kayak mounting brackets
- Keep the theoretical direct to consumer cost close to about **\$200** which is cheaper than the current market solutions

Side Loading Kayak System

Maxim Begin, James Descoteau, Derek Elwell, Christian Workman and Advisor Dr. Todd Gross Department of Mechanical Engineering, University of New Hampshire

Preliminary Designs

- Each member of the team produced an initial design using the design criteria
- The designs were reviewed for pros and cons of each one

- Mounts to cross bars on top of vehicle
- Arm that extends over kayak
- Block and tackle pulley system to lessen lifting force
- Roller system to run kayak onto rack
- Two separate parts to increase user movability

Takeaways from prototype testing:

- Larger displacement at free end

Latest Product

- Made from steel beams
- Increased height from roof

- rather than steel to decrease weight

Prototype

• Needed to add more height from roof • This was a rapid prototype so imperfect results were expected • Learned that the final product must be very rigid around the mounting point to ensure no flexing from arm moment occurs

• Corner bar to help rigidity and stabilization

Further Discussion

• In final production the system would be made from aluminum

• The design would be optimized to increase manufacturability • These include: adjusting dimensions for universal use and optimizing dimensions for strength requirements