
Completed Features
● Cross-platform Mobile Application

○ Download data from the logger using IOS or Android device
○ Stage data on-device for future uploading
○ Delete stored logger data
○ Upload data from device to AWS bucket

● Data Processing Pipeline

○ Add support for data-driven processing routing
○ Implement framework for easy operation creation and

customization of pipeline
○ Add single-step deployment of pipeline to AWS
○ Centralize instance-specific configuration

Future Work
● Cross-platform Mobile Application

○ Allow for deletion of specific files
○ Implement error catching when transferring

● Data Processing Pipeline

○ Create web-app for easily customizing configuration and
deployment configs

○ Expand pre-existing documentation regarding custom operation
creation and customization

Acknowledgements

Wireless Inexpensive Bathymetry Logger (WIBL)
1, 4 Patrick Doherty, 1, 3 Connor Murphy, 1, 4 Jason Worden, 1, 3 Jason Waleryszak, 2 Dr. Brian Calder

WIBL is one of CCOM JHC's contributions to the Seabed 2030 project,
an international effort to produce a definitive map of the world’s
ocean floor by the year 2030. WIBL aims to provide an inexpensive
system to contribute to this effort. The project consists of three
primary components: the physical logger, used for collecting the
bathymetry data; a mobile application, used for transferring the data
from the logger to the data processing pipeline; and finally the data
processing pipeline, used to refine, convert, and upload the data to
DCDB, the data repository for Seabed 2030.

The objectives of this project were twofold: develop a cross-platform
mobile application for transferring data from the logger to the
pipeline, and replace the linear data processing pipeline with a
modular alternative, enabling customization by third-parties.

Data Processing Pipeline

Loggers are not capable of uploading to the data processing pipeline
directly, instead they utilize a mobile device to offload the data and
upload it after a voyage has been completed. The app has to be able
to connect to the physical logger, retrieve the bathymetric data stored
on the logger, and upload that data to the data processing pipeline.
WIBL switch from using Bluetooth to WIFI for data transfers just prior
to the start of this project; this change resulting in the depreciation of
previous app, which only supported Android. Google’s Flutter was
selected as the cross-platform framework for the app because of its
speed and extensive documentation. The app fully supports this new
mode of data transfer and provides support for all major mobile
platforms.

Data Processing Pipeline Architecture

The project achieved both of the goals outlined in the project's
charter. The cross-platform app and new pipeline are both production
ready and published as open source projects:

 Pipeline WIBL App

WIBL will continue active development by Dr. Brian Calder and CCOM
through the generous funding of NOAA.

Introduction Status

Conclusions

 Cross-Platform Mobile App

WIBL does not perform any on-device data refinements. Instead,
refinement operations such as timestamping, deduplication, and
outlier rejection are performed by a data processing pipeline in AWS.
Figure 1 illustrates all components of the WIBL system, of note is the
pipeline (encircled by the rectangle). Figure 2 presents the dynamic,
non-linear pipeline which now replaces the pipeline included in Figure
1. The pipeline makes use of AWS Step Function, a service for
chaining AWS Lambdas together using a state machine routing
model. All data is stored within a singular WIBL bucket (not shown in
the diagram). When data is uploaded to the bucket, AWS EventBridge
triggers the step function, thus beginning a new pipeline execution.
Jobs implement pipeline or data refinement operations. The
controller handles which jobs are run, and when. The controller
implements a routing strategy, allowing for both (simulated) linear
and non-linear routing. To make all of this easy to deploy, Serverless
has been configured to enable single-command deployment and
setup of the entire pipeline.

1 Computer Science Department, University of New Hampshire, Durham, NH 03824
2 Jere A. Chase Ocean Engineering Laboratory, University of New Hampshire, Durham, NH 03824

App Design

Figure 1: Upload process diagram implementing previous, non-configurable, AWS processing pipeline

Figure 2: New AWS data processing pipeline using an AWS Step Function for routing and AWS Lambdas for compute operations

Figure 3: Cross-platform app data transfer screen Figure 4: Cross-platform app configuration screen

Dr. Brian Calder, CCOM, Project sponsor

Matthew Plumlee, UNH CS Department, Advising faculty

Dr. Brian Miles, CCOM, Data serialization

Chris Schwartz, CCOM, Developer of WIBL Android app

Adriano Fonseca, CCOM, Logger setup and configuration

Joshua Girgis, CCOM, Logger setup and configuration

The user first connects the mobile
device to the logger via wifi. When
the app detects a connection to a
wibl device it displays the devices
IP on the home page and provides
access to the transfer button as
shown in Figure 3.

When the “Transfer Data” button is
pressed the app sends a
command to the logger over wifi
that returns all the files, which are
then stored locally on the device
and are visible in the Files tab.

When the “Upload Data” button is
pressed in the Files tab all the files
stored locally are transferred to
the upload bucket in the cloud
processing stack.

Figure 4 shows the Settings page
used to configure the app. Each
setting has a brief description
underneath.

3 Data Processing Pipeline
4 Cross-Platform Mobile Application

