
PiRail
Team Member: Jeff Fernandes, Ben Grimes, Maximillian Hennessey, Liqi Li

Project Sponsor: Jonathan Miner
Department of Computer Science, University of New Hampshire

Data Process

Results

Introduction

Future Work

• Trade study on algorithms to process IMU data.
• Analyze and plot a single dataset.
• Analyze and plot multiple datasets.
• Build a web-based application compatible on any

device that demonstrates calculated data for the
user.

Architecture Design

Background - Railroads face the challenge of
inspecting and maintaining miles of track, often
involving time-consuming manual inspection. PiRail
has developed a hardware platform to collect GPS
budget-friendly (location), IMU (vibration), LIDAR
(laser measurement) and LPCM (acoustic) data.
Proposed Solution – Build a web-based application
to analyze and plot multiple IMU datasets. Give the
user the ability to pan and zoom through the
dataset.

After track data is recorded, it can be uploaded to
our website and displayed on a graph with
thousands of data points. The user can zoom
throughout the graph and even reset it to the initial
state. We also calculate outliers and other various
points of interest. The website can also be used to
learn more about our product and how to get in
contact with us. Excluded from the final product, our
ML algorithms and results.

• Enhance the web interface to display LIDAR and
LPCM data.

• Apply ML algorithms to proper training and testing
data.

• Enable the user to select from a wide range of
datasets.

• Enhance frontend for optimal usage.

Goals

 Frontend - Our web interface uses the open-source Chart.js library.
This library is well documented, easy to use, and supports several different
graph types. The best choice for this application was the "scatter" plot which
enables us to plot individual data points. Chart.js is enhanced with functions
that enable panning and zooming through the dataset. With this framework,
we have a visual representation of two of the datasets recorded prior to our
work. To enhance the user experience, we added many features and details
to the website, such as images and device explanations. We also added
margins around the contents to enhance the content's readability and
attractiveness. The website also included a header and footer to help users
navigate throughout the website.
 Backend - we can access arguments passed from the client and from
there either select an existing data set or create a new smaller one from a
larger existing one. This is based on the arguments passed in by the client.
Once the data set has been created and/or selected, the server performs a
statistical analysis on the data set. It calculates basic things such as
averages, minimums, maximums, and standard deviation. Once calculated it
creates and stores this data on the server (as to be returned faster if the
same request is made again) and then returns all information back to the
client as JSON objects.

Machine Learning
•ML Classification Algorithms: Logistic Regression, K-Nearest Neighbors, Support Vector

Machines.
oFeatures: Linear acceleration on the x, y and z axis. Pitch, Roll and Yaw.
oResponse: Binary classifier: potentially damaged or undamaged.

• Cross Validation: k-fold cross validation.
oResults: Support Vector Machines provided the best results: highest accuracy.

• Limitations: Insufficient amount of prior data collected for training and testing.
oSolution: Created an algorithm using linear acceleration on the z axis to find outliers

outside of x number of standard deviations. This became the classier for our training and
test data.

oIssues: Without actual track health data and using our temporary solution we are not
classifying health but instead classifying outliers for the linear acceleration on the z axis.
Also, because we are using the linear acceleration on the z axis we must omit it from our
features as it is essentially the response.

• Expandability: All classification algorithms have been created using our own implementations
and open-source libraries. The focus of our last sprint was making this as expandable as
possible, only needing (any) features and a (any) response to utilize our ML implementations.

Data Collection
Device

Data Collection ML Results

Database Frontend Logistic
Regression SVM

Testing
 We will use existing PiRail software as test cases. We need to ran prior code to see
the max point, then compare it with our chart to see if it is close or different. We also need
to check if our chart can find outliers between multiple sets of data.
 For our learning model we will gather testing data from prior data collections and
split it up between test and training data. Train the model with our training data and test
with testing data. We create our test and training data by finding outliers on the z-axis of
the linear acceleration. In the future we hope to have explicit training and testing data.

KNN

Prior Work:
A Raspberry Pi
with LIDAR and
GPS enables us to
record track data.

The track data is
then recorded into
our database
which is filtered
by axes.

The database is
then used to
display track data
onto our frontend
for the user.

This graph depicts KNN
when K = 1. Any new data
point would be classified to
its 1 closest neighbor as
highlighted in the graph.

Probability curve on a binary
scale constrained between 0
and 1. 0 being undamaged and
1 being damaged.

The hyperplane separates our two
classes, while the margin is
calculated as the perpendicular
distance from the line to only the
closest points, these are our
support vectors that define the
hyperplane.

Development Tools

IntelliJ GithubDiscord Drive Python JavaScript

